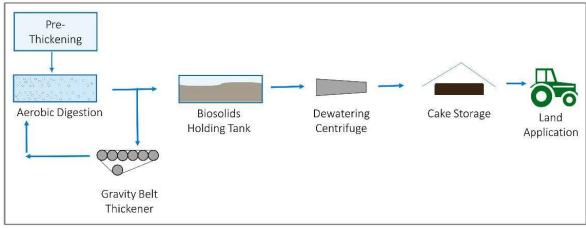
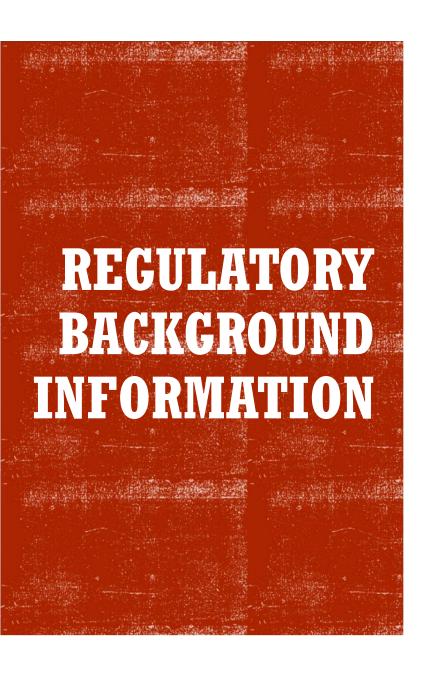

SPRINGBROOK WATER RECLAMATION CENTER

- Brief historical overview of Springbrook Water Reclamation Center
- Regulatory background information
- Where have we been?
- Where are we now?
 - Asset Inspection and Evaluation
- 5 Year CIP summary
- Discussion & Questions


SPRINGBROOK WATER RECLAMATION CENTER

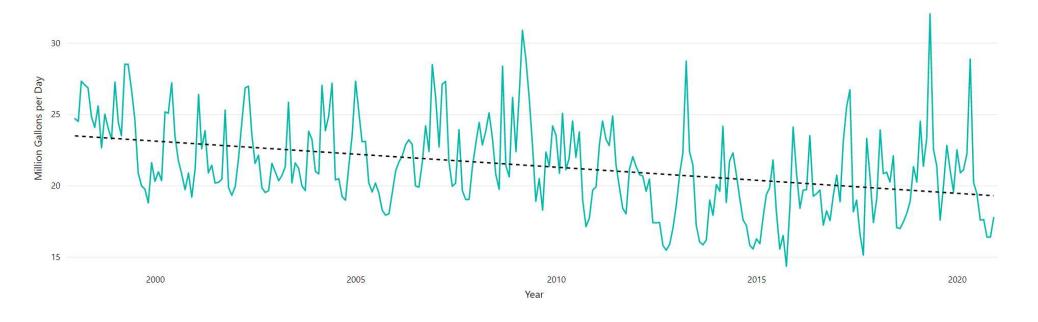
- Activated sludge, aerobic digestion process
- Originally constructed in 1973-74
 - 10 MGD (DAF)
 - Many original facilities still in use today
- Expansions in 1982, 1989,1996 and 1999
- Rated Capacity:
 - 26.25 MGD (DAF)
 - 55.13 MGD (DMF)

Existing treatment process

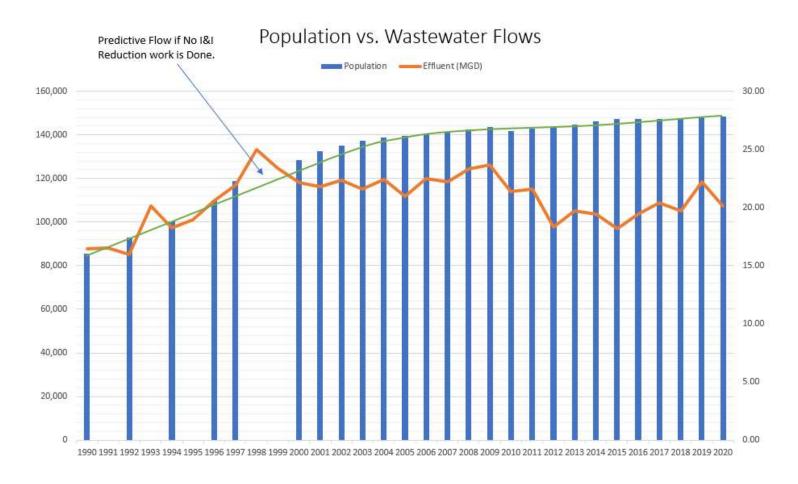


Influent is water, wastewater, solids, or other liquid flowing into a treatment plant.

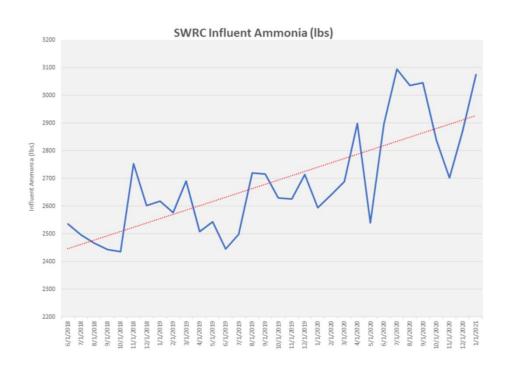
Effluent is wastewater - treated or untreated - that flows out of a treatment plant.

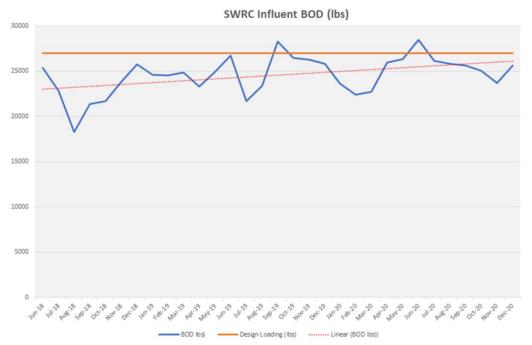


- SWRC current NPDES permit IL0034061
- Current permit term 1/1/2019 12/31/2023
- 26.25 MGD (DAF), 55.13 MGD (DMF)
 - Expansion to 30 MGD (DAF), 63 MGD (DMF) allowed but will trigger a 1.0 mg/L P limit
- 1.0 mg/L total Phosphorus limit compliance by January 1, 2030
- Membership and contributions to LDRWC
- Changing regulatory environment
 - Success of watershed groups negotiating favorable permit conditions
 - NIP/NARP results anticipated, lower limits possible
 - Nitrogen limits
 - Contaminants of emerging concern (PFAS, DBP's, hormones)


FLOWS TO SWRC ARE DECREASING....

Effluent Discharge by Month with Trendline





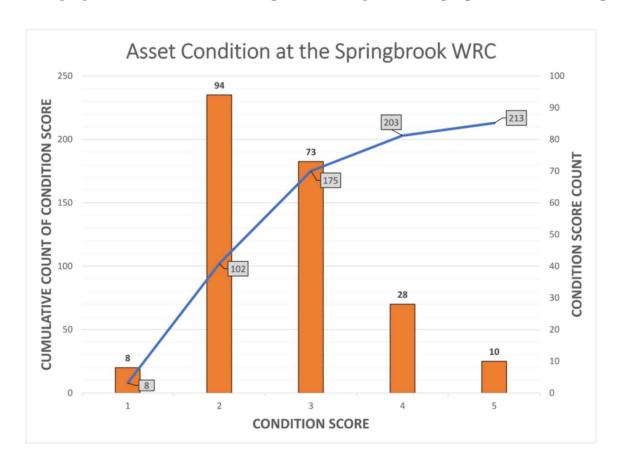
BUT POPULATION IS INCREASING....

THEREFORE, LOADING TO THE PLANT IS INCREASING.



- BioWin modeling 2004, 2005, 2007, 2013(2), 2016, 2020
- Pilot studies- MBR, full scale P removal South Plant, Digestion mixers
- Phosphorus Discharge Optimization Plan
- Phosphorus Feasibility Study
- Industrial Pre-treatment survey
- Ultimate Flow & Loading evaluation completed in November 2019
 - Plant nearing its treatment capacity
 - Results invited further study
- Facilities Plan- underway
 - Includes asset condition evaluation (plant systems, facilities and equipment), risk assessment
 - Definitive evidence that plant is nearing capacity
 - BOD (lbs., hydraulic retention time), N. Clarifiers (SOR), Sand filters (hydraulic loading rate)

GETTING READY FOR PHOSPHORUS: MAJOR PROJECTS


- Influent Screening Improvements (2017)
- Biosolids Holding Tank (2016)
- North Plant RAS/Grit Improvements (2014)
- Tertiary Filter Rehabilitation (2011-12)
- Aerobic Digestion Improvements (2008)

- Facilities Plan Completed
 - Asset Evaluation Complete
 - Treatment ProcessesEvaluated
 - Capital Programs Created(5-Year, 10-Year, 20-Year)

ASSET EVALUATION: CONDITION

A score of 1 indicates the asset is 'like new' and 5 indicates the asset is in poor condition.

The graph indicates that most of the assets that were assessed had a low to medium condition rating.

"This is expected because the facility is older, but well maintained."

There is a good understanding of the assets that are at the highest risk of near-term failure.

ASSET EVALUATION: RISK

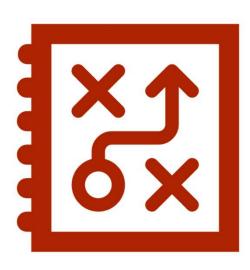
This graph shows the risk rating for assets. Risk is a combination of the condition score and criticality rating.

A higher risk score (i.e., 5) represents an asset that is in poor condition and that would result in a severe consequence upon failure.

Conclusion:

- Most assets are assessed to have a low risk.
- Capital projects to prioritize assets with a high-risk score have been developed.

TREATMENT PROCESSES EVALUATED


• Plant loading capacity issues:

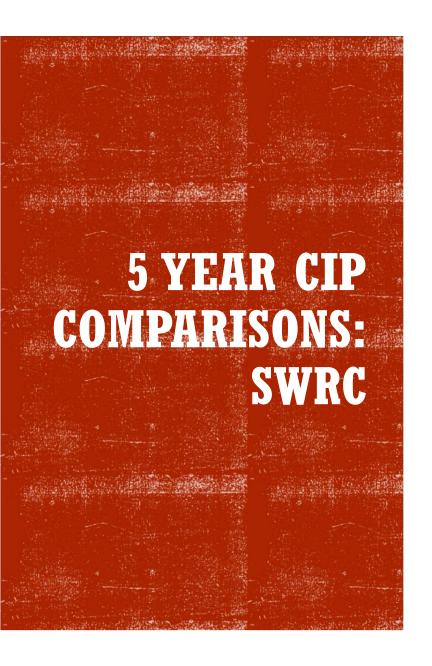
					Capacity	
Unit Process	Design Criteria	Design Conditions	Units	Requirement	Current	Future
Influent						
Influent Pumping	Hydraulic Capacity	Peak	MGD	_	125.6/65.8	125.6/75.1
Screening	Approach Velocity	DAF-Peak	ft/sec	1.25-3	1.3-2.1 ^A	1.7-2.4 ^A
North Plant (86% of flow	K					
Grit Removal	Hydraulic Capacity	Peak Instantaneous	MGD	30/Unit ^c	60/56	60/63
Aeration	BOD Loading Rate	Average	ppd/1,000 ft ³	15 ^A	32	38
Aeration	Hydraulic Retention Time	Average	hours	8 ^A	7.0	5.5
Final Clarification ^D	Surface Overflow Rate	Peak Hour	gpd/1,000 ft ²	1,000	1,337	1,515
Final Clarification	Solids Loading Rate	Max Day	ppd/ft ²	35	31	38
Sand Filters	Hydraulic Loading Rate	Peak with 1 unit out of service	gpm/sf	<5	6.6 ⁸	7.6 ⁸
Disinfection	Currently Under Evaluation (Refer to TM5)					
South Plant (14% of flow						
Grit Removal	Hydraulic Retention Time	Peak	minutes	3-5	22	19
Aeration	BOD Loading Rate	Average	ppd/1,000 ft3	15 ^A	31	37
Aeration	Hydraulic Retention Time	Average	hours	8	7.1	5.6
Final Clarification	Surface Overflow Rate	Peak Hour	gpd/1,000 ft ²	1,000	870	986
	Solids Loading Rate	Max Day	ppd/ft²	35	15	18
Disinfection	Currently Under Evaluation (Refer to TM5)					
Solids Handling	56	1 20	1000 A.M.			
Aerobic Digesters	Capacity per Population Equivalent		ft³/PE	2	4.67	4.67
Thickening – GBT	Hydraulic Capacity (2 units; each unit at 350 gpm) ^G		gpm	NA	700	700
Dewatering – Centrifuge	Hydraulic Capacity (2 units;	each unit at 350 gpm)	gpm	NA	700	700
Biosolids Storage	Minimum days of storage		days	180 ^A	287 ^E	221 ^F

Facilities Plan confirmed the need to increase plant capacity.

PROPOSED: 5 YEAR CIP PROJECT SUMMARY

Project	Total Costs	2021	2022	2023	2024	2025
Phosphorus Engineering	\$2,900,000					\$2,900,000
Asphalt Roadway Improvements	\$150,000	\$50,000	\$50,000		\$50,000	
SWRC CIP Evaluation & Facilities Plan	\$135,950	\$135,950				
Lab AA System Replacement	\$100,000	\$100,000				
South Blower Building Roof Repair	\$70,000		\$70,000			
Admin Building Roof Repair	\$80,000	\$80,000				
Structural Repairs (Aeration, Biosolids, etc.)	\$300,000		\$100,000	\$100,000	\$100,000	
Influent Channel & Conveyor Support	\$277,000	\$277,000				
Influent Screening Building HVAC	\$200,000		\$200,000			
Biosolids Holding Tank (Phase 2)	\$880,000				\$880,000	
Disinfection System Improvements	\$6,420,000	\$1,284,000	\$4,173,000	\$963,000		
North Plant Aeration Improvements	\$9,200,000		\$1,380,000	\$3,910,000	\$3,910,000	
Influent Mag Meter Replacements	\$100,000	\$100,000				

Continued Next Slide



CIP PROJECT SUMMARY...CONT.

Project	Total Costs	2021	2022	2023	2024	2025
SCADA/PLC Upgrades	\$200,000		\$50,000	\$50,000	\$50,000	\$50,000
Influent Pump Station Improvements	\$1,716,000				\$686,400	\$1,029,600
South Plant Grit Removal & RAS Upgrades	\$75,000					\$75,000
South Plan Blowers Replacement	\$400,000					\$400,000
South Plan Filter Installation	\$7,100,000		\$1,100,000	\$2,500,000	\$3,500,000	
Total	\$30,303,950	\$2,026,950	\$7,123,000	\$7,523,000	\$9,176,400	\$4,454,600

Large Capital Projects are Primarily Driven by Regulatory Compliance Needs

CY	Actual CIP	Current CIP	Proposed CIP
2015	\$5,223,162		
2016	\$3,051,843		
2017	\$924,184		
2018	\$831,423		
2019	\$1,089,986		
2020	\$881,695		
2021		\$1,885,950	\$2,026,950
2022		\$5,070,000	\$7,123,000
2023		\$3,950,000	\$7,523,000
2024		\$6,880,000	\$9,176,400
2025		\$2,525,000	\$4,454,600
Total	\$12,002,293	\$20,310,950	\$30,303,950
Avg/Year	\$2,000,382	\$4,062,190	\$6,060,790

NORTH PLANT AERATION IMPROVEMENTS

Key Condition Issues:

- Half of Existing Aerators are >45 years old (remainder are >25 years old).
 Exceed service life, critical danger of multiple failures.
- Walkways are damaged
- Electrical and I&C need replacement

Process Concerns:

- Process is reaching its loading capacity for BOD and ammonia (NH₃)
- Challenges with DO during the summer
- Undersized for expected growth

AERATION IMPROVEMENTS

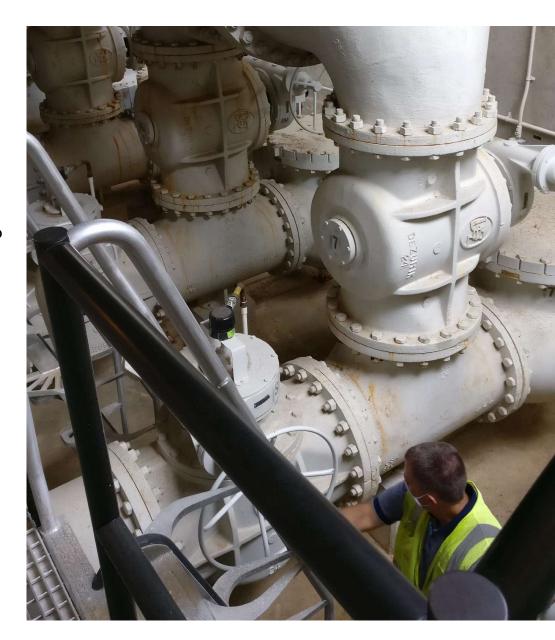
Proposed Improvements:

- Decommission existing mechanical aeration system
- Install fine bubble membrane aeration system
- High efficiency blowers
- Electrical, process-mechanical, piping
- HVAC
- Instrumentation and controls

Total Cost: \$9,200,000

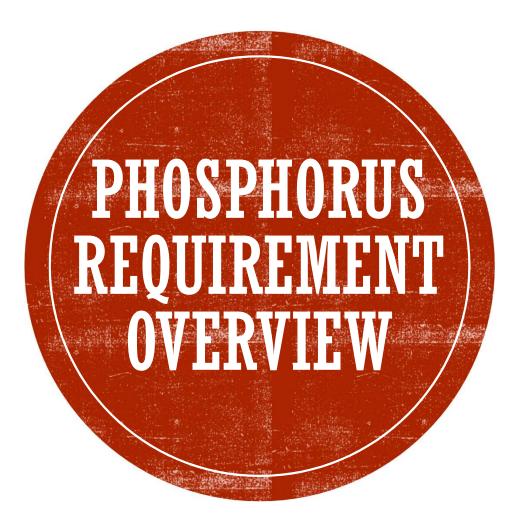
May Trigger Phosphorus Improvements

INFLUENT PUMP STATION IMPROVEMENTS


Key Condition Issues:

- No spare parts available
- Pump 2 Tested 12/2020 40% efficiency drop
- Electrical and I&C need replacement
- Gas safety and HVAC have exceeded design life
- Minor building and roof improvements

Recommendation:


- Replace two 100 hp pumps
- Replace electrical and I&C
- Replace gas safety and HVAC
- Repair building and roof leaks

Total Cost: \$1,716,000

BEYOND 2025: 10 AND 20-YEAR CIP

- Design engineering for Phosphorus Improvements beginning in 2025
 - Project cost estimated at \$50-\$60 million, more for a lower P limit
 - Construction to begin in 2027-28
- Tertiary filters- 2033, maybe sooner
- South Plant RAS/Grit System Upgrades
- Biosolids Holding Tank Phase 2
- Potential lower P limits, N limits, other regulatory pressure
- Additional staff at the plant necessary to handle increased capacity and more complex processes
- Additional engineering staff necessary to execute capital and O&M projects

Name: Phosphorus

Symbol: P

Atomic Number: 15

Atomic Mass: 30.97376 amu

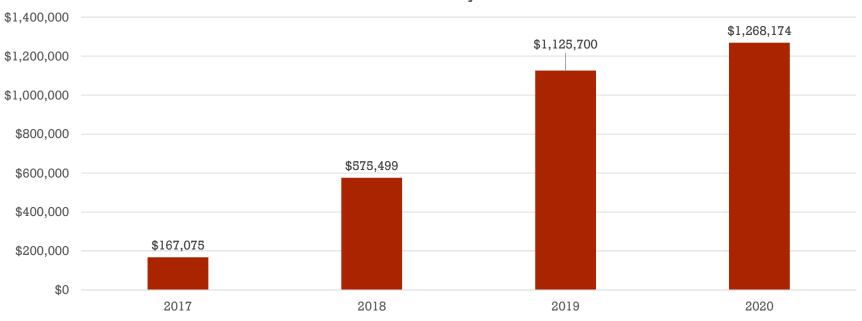
Melting Point: 44.1 °C (317.25 K, 111.38 °F) Boiling Point: 280.0 °C (553.15 K, 536.0 °F)

Number of Protons/Electrons: 15

Number of Neutrons: 16 Classification: Non-metal Crystal Structure: Monoclinic Density @ 293 K: 1.82 g/cm³

Color: white

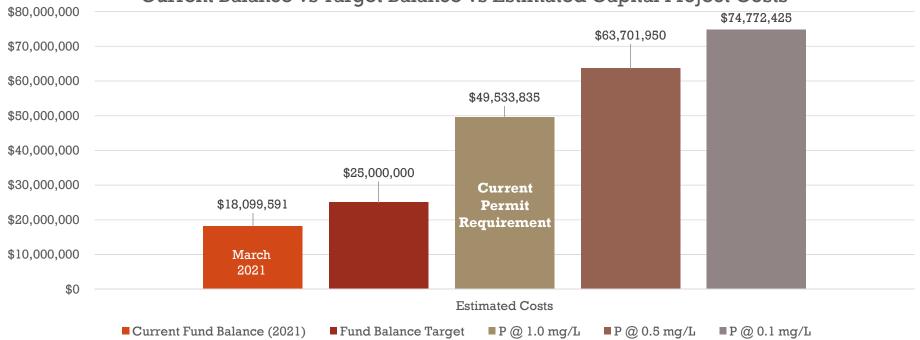
PHOSPHORUS ROAD WAP- FEASIBILITY STUDY


- NPDES Permit requirement = 1 mg/L
- Three Phosphorus limits were evaluated: lmg/L, 0.5 mg/L, 0.1 mg/L
- Biological, chemical or combination
- Permit requirement to be online by January 1, 2030

Concentration Limit	Permit Scenario	Capital Cost	Annual Cost	20-Year TPW
1.0 mg/L	Annual Average	\$49,533,835	\$86,778	\$50,650,516
	Seasonal Average	\$49,533,835	\$134,754	\$51,267,876
	Monthly Average	\$49,533,835	\$254,693	\$52,811,276
0.5 mg/L	Annual Average	\$63,701,950	\$348,371	\$68,184,845
	Seasonal Average	\$63,701,950	\$417,211	\$69,070,691
	Monthly Average	\$63,701,950	\$486,051	\$69,956,536
0.1 mg/L	Annual Average	\$74,772,425	\$1,370,504	\$92,408,316
	Seasonal Average	\$74,772,425	\$1,433,059	\$93,213,287
	Monthly Average	\$74,772,425	\$1,495,614	\$94,018,258

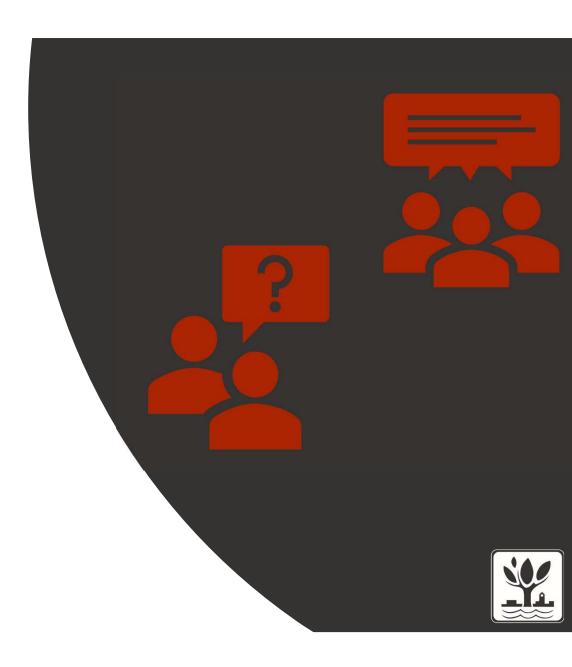
PHOSPHORUS SURCHARGE REVENUES

Collections By Year



\$14,588,889 Transferred from Electric to the Fund as Loan Payback

PHOSPHORUS FUND



Estimated Capital Costs in 2019 Dollars
Not Adjusted For Inflation

Discussion & Questions

