STORMWATER MANAGEMENT PERMIT APPLICATION AND REPORT

FOR

NAPER COMMONS DUPAGE COUNTY, ILLINOIS

REVISED FEBRUARY 24, 2021 REVISED JANUARY 20, 2021 OCTOBER 16, 2020 SEPTEMBER 14, 2020

402.138

PROFESSIONAL ENGINEER'S CERTIFICATION

STATE OF ILLINOIS }

SS.

COUNTY OF DUPAGE }

I, CHRISTOPHER R. MORGART, A LICENSED PROFESSIONAL ENGINEER OF ILLINOIS, HEREBY CERTIFY THAT THIS TECHNICAL SUBMISSION WAS PREPARED ON BEHALF OF PULTE HOME COMPANY, LLC BY CEMCON, LTD. UNDER MY PERSONAL DIRECTION.

DATED THIS DAY OF FEBRUARY

___, AD, 2021

ILLINOIS LICENSED PROFESSIONAL ENGINEER NO. 062-055788

MY LICENSE EXPIRES ON NOVEMBER 30, 2021

PROFESSIONAL DESIGN FIRM LICENSE NO. 184-002937, EXPIRATION DATE IS APRIL 30, 2021

LICENSED PROFESSIONAL

ENGWEER

NOTE: UNLESS THIS DOCUMENT BEARS THE ORIGINAL SIGNATURE AND IMPRESSED SEAL OF THE DESIGN PROFESSIONAL ENGINEER, IT IS NOT A VALID TECHNICAL SUBMISSION.

PREPARED FOR:

PULTE HOME COMPANY, LLC 1900 E. GOLF ROAD, SUITE 300 SCHAUMBURG, IL 60195

PREPARED BY:

CEMCON, LTD. 2280 WHITE OAK CIRCLE, SUITE 100 AURORA, IL 60504-9675

847-230-5400 630-862-2100

STORMWATER MANAGEMENT

PERMIT APPLICATION AND REPORT

FOR

NAPER COMMONS

DUPAGE COUNTY, ILLINOIS

TABLE OF CONTENTS

<u>SECTION</u>		<u>PAGE NO.</u>
1.0	PROJECT DESCRIPTION	1
2.0	EXISTING "WITHOUT PROJECT" CONDITIONS	1 - 4
	A. WATERSHED DESCRIPTION	
	B. METHODS	
	C. EXISTING CONDITIONS SUMMARY	
3.0	FLOODPLAIN, WETLANDS AND BUFFER ASSESSMENT	4 - 5
	A. FLOODPLAIN EVALUATION	
	B. BUFFER ASSESSMENT	
	C. WETLANDS ASSESSMENT	
4.0	PROPOSED "WITH PROJECT" CONDITIONS	5 - 7
	A. DESCRIPTION	
	B. HYDROLOGIC ANALYSIS	
5.0	POST CONSTRUCTION BEST MANAGEMENT PRACTICES	7
6.0	SOIL EROSION AND SEDIMENTATION CONTROL PLAN	8
7.0	SUMMARY	8

STORMWATER MANAGEMENT

PERMIT APPLICATION AND REPORT

FOR

NAPER COMMONS

DUPAGE COUNTY, ILLINOIS

EXHIBITS

TAB 1 PROJECT OVERVIEW

- A. Stormwater Management Certification
- B. Location Map
- C. FIRM Panel FM17043C0153J LOMR
- D. DuPage County Soils Map
- E. National Wetlands Inventory Map
- F. Relevant Permits

TAB 2 STORMWATER SUBMITTAL

- A. Existing Conditions Watershed Exhibit
- B. Existing Conditions Supporting Documentation
- C. "EXIST" Existing Conditions PondPack Model
- D. Proposed Conditions Watershed Exhibit
- E. Proposed Conditions Supporting Documentation
- F. "ONSITE" Proposed Conditions PondPack Model & Output
- G. "PROP" Proposed Conditions PondPack Model & Output

TAB 4 WETLAND ASSESSMENT

A. Wetland Delineation & Assessment Report (Under Separate cover by V3 Companies of Illinois, Ltd.)

ELECTRONIC COPIES OF THE PONDPACK MODELS

STORMWATER MANAGEMENT

PERMIT APPLICATION AND REPORT

FOR

NAPER COMMONS

DUPAGE COUNTY, ILLINOIS

1.0 PROJECT DESCRIPTION

The Naper Commons Subdivision proposed by Pulte Home Company, LLC is a 67.6± acre, 161 single family home and 66 townhome subdivision west of Naperville Road, North of W Lucent Lane in Naperville, DuPage County (refer to the project location map in Exhibit 1B). Site infrastructure improvements (see Engineering Plans) will include the construction of sanitary sewers, watermains, stormwater drainage and conveyance facilities, and stormwater management facilities which will be vegetatively stabilized for stormwater discharge control and best management practices.

The purpose of this Stormwater Management Analysis and Report is to summarize the hydrologic and hydraulic analyses performed for Existing and Proposed Conditions and to demonstrate that, when constructed, the development will comply with Naperville, County, State, and Federal laws and regulations and provide a significant drainage improvement and regional benefit for the watershed.

2.0 EXISTING "WITHOUT PROJECT" CONDITIONS

A. WATERSHED DESCRIPTION

The project site is part of the old Lucent Campus now owned by Nokia. A large portion of the property was previously mass graded and used as an overflow parking lot. In addition the north section is currently farmed and the remainder is open grass and trees.

There are four major hydraulic points of release on the site, all of which are tributary to Rott Creek (refer to the Existing Watershed Exhibit in Exhibit 2A). The first location of release

includes approximately 3.2 on-site acres (Subarea 001) which drain to the northwest to the DuPage County Forest Preserve. The second location of release includes approximately 14.2 on-site acres (Subareas 002) which drain to an existing wetland northeast of the site that encroaches onto the northeast corner of the property. Included with the 14.2 acres there is an additional 424.9± acres tributary to the existing wetland. The existing wetland drains to the east via a storm sewer under Naperville Road. The third location of release includes approximately 39.5 on-site acres (Subareas 003) which drain to the existing Nokia stormwater management facility (SWMF). In the existing condition, subarea 003 includes the north overflow parking lot expansion. Based on the Lucent Technologies Indian Hill Labortory Proposed Parking Lot stormwater report which was prepared by Roake and Associates, Inc. the impervious area of the parking lot requires approximately 13.7 ac-ft of stormwater storage which is currently provided for in the existing Nokia SWMF 012. The forth location of release includes approximately 7.7 on-site acres (Subareas 004) which drain to the existing 36" storm sewer that is Rott Creek tributary. Additionally upstream of the subarea 004 there is approximately 39.4 acres of offsite area that includes the Danada Woods Townhomes, Danada Professional Center, and Unincorporated single family development. The Danada Woods Townhomes SWMF drains through a 5.25" restrictor directly to a 36" storm sewer along Lucent Lane. The Danada Woods Townhome development was designed such that the 10 year high water level would stay within the Danada Woods development but the 100 year event would overflow and utilize existing storage on with the subject proposed development. Based on the Danada Woods Townhomes stormwater report which was prepared by Roake and Associates, Inc. 17.3 ac-ft of storage was provided on the Danada Woods property and subject property at a HWL of 736.26. Approximately 13.8 ac-ft of storage was provided on the Danada Woods development and an additional 3.5 ac-ft on the subject property. This required storage will be provided in the proposed stormwater facility adjacent to the Danada Woods basin.

B. METHODS

In accordance with the current DuPage County Countywide Stormwater & Floodplain Ordinance (Ordinance), a proposed site development which contains more than 25,000 sq-ft. of new impervious area requires stormwater management to protect downstream properties. The Ordinance requires that the proposed development attenuate flows to 0.1 cfs/ac. of development area or below existing conditions peak flows, whichever is more restrictive.

To develop rainfall vs. runoff relationships for the development, the Soil Conservation Service (SCS) method was utilized with the PondPack V8i software and employed the following methodology and procedures in determining the respective hydrologic and hydraulic parameters.

- Runoff Curve Numbers The TR-55 Tables 2-2a (urban areas) and 2-2c (agr. Lands), "DuPage County Soil Survey", and watershed land use data were utilized to calculate runoff curve numbers (CN) for input to the Pond Pack Model. A CN = 98 was used for all impervious surfaces and the area encompassed by the Stormwater Management Facility (SWMF), a CN = 82 was used for the general farmstead, and a CN = 74 (type C soils) was used for all other landscaped pervious surfaces. The CN documentation for the project site is provided in Exhibit 2B for Existing Conditions and Exhibit 2E for Proposed Conditions.
- Time of Concentration The time of concentration (T_c) was calculated using SCS TR-55 methodology. The T_c calculations were performed for flow paths representing the travel from the hydraulically most distant point of the watershed to the point of interest. The T_c documentation for the project site is provided in Exhibit 2B for Existing Conditions and Exhibit 2E for Proposed Conditions.
- Precipitation Data/Rainfall Distribution Updated Bulletin 70 northeast rainfall values (March 2019 revision) with Huff rainfall distributions were selected in accordance with Appendix E criteria and the "Technical Guidance" to the Ordinance. Storage volumes were evaluated based on the 100-year frequency 24-hour duration event measuring 8.57 inches of precipitation and the Huff 3rd quartile rainfall distribution. It should be noted that the rainfall data for events lower than the 2-year intensity have not been developed, so the old rainfall data will be used for storms lower than the 2-year events.
- Stage vs. Storage and Stage vs. Discharge Relationships Stage vs. storage relationships for the SWMF were measured within AutoCAD at regular intervals corresponding to the level of potential inundation, and the volume was calculated by the method of average area times the incremental interval. For off-site areas, CEMCON Ltd. surveyed the upstream reservoirs' outlet control structures and supplemented the plans with County topography to develop stage-storage and stage-discharge relationships. Stage vs. discharge relationships were developed in PondPack for all possible combinations of headwater and tailwater. PondPack was then run dynamically to evaluate the headwater

and tailwater at each time step to determine the flow through each structure. Supporting documentation is provided in Exhibit 2B for Existing Conditions and Exhibit 2E for Proposed Conditions.

C. EXISTING CONDITIONS SUMMARY

The Existing Conditions model was run for the 2-year and 100-year 1-hour events through the 24-hour events. The **2-year 2-hour event** and **100-year 1-hour event** were determined to be the critical duration event leaving the site, generating the highest peak flow. The numerical results are summarized along with the proposed results in Table 2 in Section 4.0 below. Refer to Exhibit 2C for the PondPack Model input and output for key events.

3.0 FLOODPLAIN. WETLANDS AND BUFFER ASSESSMENT

During the project-planning phase, the subject site was evaluated for the presence of regulatory floodplains/floodways, wetland habitat, and buffers. This evaluation consisted of a detailed review of available topographic, wetland, and FEMA Maps. Following is an account of the sources referenced and procedures employed in conducting the assessment for the project.

A. FLOODPLAIN EVALUATION

The project site is ultimately tributary to the Rott Creek. Refer to Exhibit C for the FEMA Firm panel 1704343C0153J letter of map revision determination document effective April 26, 2021. The revised regulatory floodplain will only encroach onto the north east corner of the sire with the revised 738.9 elevation. Furthermore, there is an additional Zone AE floodplain that encroaches the site along the northeast corner. The zone AE floodplain location at Hesterman Drain has a bfe of 739.5. The proposed project will not include any work within the flood plain limits.

B. BUFFER ASSESSMENT

The County Ordinance identifies riparian buffer environments as "vegetative areas along waterways within the limits of the regulatory floodplain". The property as stated above does not contain regulatory floodplain. See the Wetland Delineation Report prepared by V3 Companies of Illinois, Ltd.

C .WETLANDS ASSESSMENT

According to the National Wetland Inventory GIS database, there are wetlands within the development limits. Refer to Exhibit 1E for a copy of the NWI map. A Wetland Delineation Report has been prepared for the site by V3 Companies of Illinois, Ltd. Refer to Exhibit 4A for additional information.

4.0 PROPOSED "WITH PROJECT" CONDITIONS

A. DESCRIPTION

In accordance with the City of Naperville and DuPage County Stormwater Management Ordinance, any proposed site development which would affect the discharge of stormwater requires stormwater management to protect downstream properties. In general, stormwater management facilities (SWMF) are configured to restrict site runoff for the 100-year event to 0.10 cfs/acre or to less than existing conditions, whichever is more restrictive.

Naper Commons will incorporate six (6) SWMFs (refer to Exhibit 2D for the Proposed Conditions Watershed Exhibit). Proposed SWMF 001 and 007 are located at the northeast corner of the property, and will discharge directly the existing wetland northeast of the site. Proposed SWMF 002 and 003 are located upstream of the existing Nokia SWMF 012. Based on discussions with the City of Naperville, the project will utilize the previously provide storage within the existing Nokia SWMF along with the additional proposed SWMFs. Approximately 13.7 ac-ft of storage was provided within the existing Nokia SWMF 012 for the parking lot on the existing site. Proposed SWMF 005 and 006 consists of two SWMFs with an equalizer pipe directly downstream of the existing Danada Woods SWMF. The existing Danada Woods SWMF restrictor and emergency overflow will remain. Furthermore, the existing Danada Woods SWMF utilized approximately 3.5 ac-ft of storage on the proposed site. An onsite only

model has been included for SWMF 005 & 006. The proposed SWMF 005 & 006 will require approximately 3.9 ac-ft of storage and an additional 5.2 ac-ft of storage is provided at overflow to accommodate the required storage onsite for the Danada Woods development. The proposed SWMF 006 will discharge via a restrictor structure to the existing 36" storm sewer tributary to Rott Creek.

The Naper Commons development will require a total of 38.3± ac-ft of storage. The seven onsite SWMFs will provide a combined 28.8± ac-ft of storage and 13.7 ac-ft of storage within the existing Nokia SWMF 012. The site will provide 42.5 ac-ft of combined storage for the proposed site.

B. HYDROLOGIC ANALYSIS

As previously stated, the site runoff for the development has been documented to be in strict conformance with the Ordinance. The proposed condition Pondpack model which accounts for the construction of the proposed stormwater management facilities on the site and the proposed land use has been prepared. This stormwater management analysis was performed to quantify stormwater storage requirements and insure that the required release rates are met in the proposed condition. The proposed release rates were calculated by adding the onsite allowable release rates (0.10 cfs/ac. for the 100yr-24hr) to establish the allowable release rate for the site. Refer to Table 1 for the allowable release rate calculations. Refer to Table 2 for a comparison between the existing and proposed total peak flows for the 2-Year and 100-Year 1Hr through 24 Hour events. See Exhibit 2G for the "PROP" PondPack Model and Output.

Table 1: Allowable Release (100-year, 24 Hour Event)

	DURATION
100 Yr	24 Hr
Dev. Area Allowable Release (cfs/ac.)	0.10
Development Area (Ac.)	61.71
(A) Development Allowable Release (cfs)	6.17
(B) By-Pass Flow (Danada Woods O-13) (cfs)	1.91
(A+B) Total Allowable Release (cfs)	8.08
Prop. Release (O-1 NE + O-7 SE + O-13 SE + O-8 EX NOKIA012) (cfs)	7.76

Table 2: Total Peak Discharge (cfs) Summary

Event	1-Hr	2-Hr	3-Hr	6-Hr	12-Hr	18-Hr	24-Hr
100-Year							
Proposed Peak Discharge (cfs)	5.22	6.12	6.50	7.02	7.51	7.75	7.76
Existing Peak Discharge (cfs)	129.44	128.30	117.85	88.95	60.84	49.09	42.57
2-Year							
Proposed Peak Discharge (cfs)	0.53	1.37	1.70	2.11	2.99	3.39	3.56
Existing Peak Discharge (cfs)	19.26	20.48	19.62	17.26	14.55	13.58	11.55

As evidenced by the results, the proposed improvements significantly reduce peak flows leaving the site. The critical events in proposed conditions are now the **2-year 24-hour event** and the **100-year, 24-hour event**.

5.0 POST CONSTRUCTION BEST MANAGEMENT PRACTICES

In accordance with the Ordinance, this development will include Post-Construction Best Management Practices (PCBMP). The required PCBMP will be provided via naturalized wetland bottom stormwater management facilities with sediment pools

6.0 SOIL EROSION AND SEDIMENTATION CONTROL PLAN

Soil erosion and sediment control measures will be proposed to protect downstream properties and the Special Management Areas from adverse effects of soil erosion and sedimentation. The proposed erosion and sediment control features will include:

- Storm sewer inlets protected with sediment trapping/filter control devices during.
- Silt fencing installed along the site perimeter and a double row of silt fence along wetland, buffer and floodplain areas.
- Construction entrance(s) will be implemented to minimize the impact to adjacent roadways.
- Temporary triangular silt dikes within the drainage swales.
- Disturbed areas permanently seeded and protected from soil erosion after final grading is accomplished.

7.0 **SUMMARY**

Pulte Home Company, LLC., proposes to develop a 67.6± acre parcel of land situated west of Naperville Road, North of W Lucent Lane in Naperville, DuPage County. The development will consist of 161 single family homes and 66 townhome subdivision. Stormwater storage/management is required to control runoff from the site per the County Ordinance.

A hydrologic analysis was performed utilizing Pondpack to verify compliance with the County Ordinance. The stormwater management systems proposed meet and exceed the requirements of DuPage County. Additionally, as demonstrated by the PondPack model results, the proposed development will significantly reduce flows downstream and provide a net watershed benefit.

H:\402138\REPORTS\2021-02-24 REVISED Prelim SWM Report.docx

TAB 1

PROJECT OVERVIEW

EXHIBIT 1A

STORMWATER MANAGEMENT CERTIFICATION

DUPAGE COUNTY STORMWATER MANAGEMENT CERTIFICATION APPLICATION (1/2)

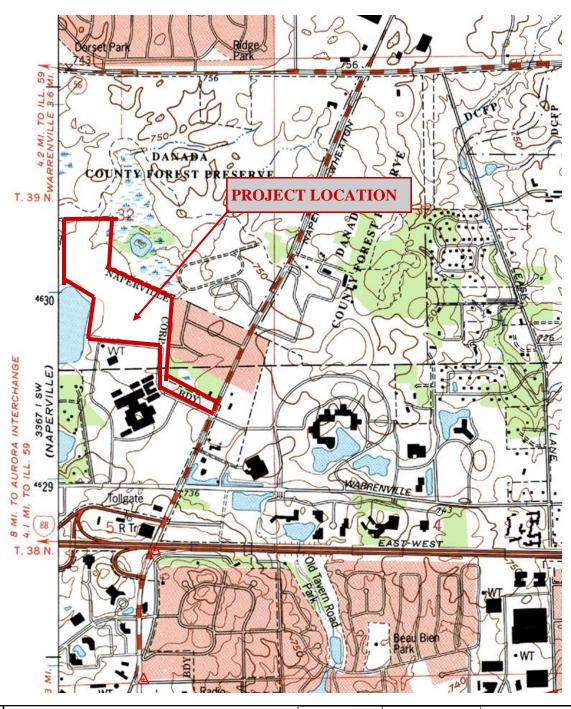
1. Community and Status Naperville □ Non ☑ Partial □ Complete	2. Date of Application		ater Application No. be assigned by community)	4. DuPage County Tracking No.	
5. Applicant:	18/21		6. Owner:		
Name: Ty Morris			Name: Ty Morris		
Company Name: Pulte Home C	Company, LLC		Company Name: Pulte Home C	Company, LLC	
Address: 1900 E. Golf Road,	Suite 300		Address: 1900 E. Golf Road, S		
City, ST, Zip: Schaumburg, IL 60			City, ST, Zip: Schaumburg, IL 60		
Phone: 630-201-3411			Phone: 630-201-3411		
Email: Ty.Morris@Pulte.com			Email: Ty.Morris@Pulte.com		
7. Description of Proposed DIL, DuPage County. Improvement improvements.	Development: Developmer nts include mass earthwork	nt of a 67.6 Ao , underground		nult-family subdivision in Naperville ement and conveyance	
8. Location of Development:			9. Legal Description		
Address: W of Naperville	Rd, N of W Lucen	t LN	32 39	N 10E	
Naperville, IL			½ Section To	wnship Range	
Municipality: Naperville, D	uPage County		PIN 05 _ 32	2 _ 300 _ 012	
Watershed Planning Area & Trib:	Rott Creek		PIN 08 - 05	5 _ 207 _ 034	
10. Check all of the condition	ons which apply:				
✓ Flood Plain ✓	Stormwater Detention	✓ Best	Management Practices S	oil Erosion & Sediment Control	
✓ Wetland ✓	Wetland Buffer	Ripa	irian Buffer		
11. Acknowledgement of On I acknowledge that I have use Management Practices (PCBI	d my best effort to identify :	zones for whi e Ordinance (ich on-site infiltration are prohibite (15-63.B)	d for Post Construction Best	
Signature of April		Ty Mor	ris.	9-14-20	
Signature of Applicant		Print Name		Date	
12. Freedom of Information Act (FOIA) I acknowledge that all architects' drawings, engineers' technical submissions and other construction-related technical documents containing stormwater management information submitted with this application may be made available for inspection or copying by the County, not-withstanding 5 ILCS 140/7(1)(k), upon the written request for such materials. Such productions will be restricted to the following parties: i) the Applicant ii) any subsequent owner of the subject property; or iii) any governmental unit having planning or drainage jurisdiction within 1 and ½ mile of the subject property.					
- Tuna		Ty Mor	ris.	9-14-20	
Signature of Applicant		Print Name		Date	
Ty Mor Signature of Owner Print Name			ris	9-14-20 Date	
13. Statement of Opinion for I am a Professional Engineer minimum criteria for stormwat	under the employment of th	e Applicant.	It is my professional opinion that	the development meets the	
(05			oher R. Morgart, P.E.	9/14/20	
Signature of Professional Engineer		Print Name		Date	

_____ Community Copy _____ DuPage County SM Copy _____ Applicant Copy

Page 1 of 2

DUPAGE COUNTY STORMWATER MANAGEMENT CERTIFICATION APPLICATION (2/2)

Community Tracking No:	DuPage County 1	racking No:
14. Statement of Opinion for Presence of F	lood Plain, Wetlands, and Buffers (15-47-A.5)	
✓ I acknowledge the presence of flood plain.	✓ I acknowledge the presence of wetlands.	☐ I acknowledge the presence of buffers.
deny the presence of flood plain.	I deny the presence of wetlands.	ldeny the presence of buffers.
9/14/20	Q/who	(16)= 9/1/41 3
Signature of Qualified Professional Date	Signature of Qualified Professional Date	Signature of Qualified Professional Date
Christopher R. Morgart, P.E.	Christopher R. Morgart, P.E.	Christopher R. Morgart, P.E.
Printed Name	Printed Name	Printed Name
15. Soil Erosion & Sediment Control Subm (For developments with less than 1 acre of	nittal Requirements (15-50.B) land disturbance that are not part of a larger commo	on plan)
I certify that the development meets the s	oil erosion and sediment control design crite	ria found in Article VII have been met.
	n/a	
Signature of Qualified Designer	Print Name	Date
16. Soil Erosion & Sediment Control Requi	irements (15-59.W) (For developments with land d	isturbing activities greater than 1 acre
I acknowledge that the site complies with		,
70	Ty Morris	9-14-20
Signature of Applicant	Print Name	9-14-20 Date
17. Acknowledgement of Required As-Buil	14 Diana (15 47 D)	
I acknowledge that a record drawing signed by size, rim, and invert elevations of pipes, storm	y either a Professional Engineer or a Professional water structures and culverts, and contours and fl water systems shall be submitted for review and	and starage valumes of all required basins of
14	Ty Morris	9-14-20
Signature of Owner	Print Name	Date
18. Intentional Misrepresentation Under Pe	enalty of Perjury	
applied for and approval of plans in connection in violation of any provision of any applicable of any	his application and rider, and it is true and correct to determine the store of the	mwater management certification(s) herein onstruction upon said premises or use thereof
(be	Ty Morris	9-14-20
Signature of Applicant	Print Name	Date
Tu	Ty Morris	9-14-20
Signature of Owner	Print Name	Date
"结合是有的,我们们是一个人们的对象。"	DO NOTWRITE BELOW THIS LINE	(PSIMA) 2017 (1) 10 10 10 10 10 10 10 10 10 10 10 10 10
19. Security (15-54)	20. Stormwater Fees	Seal/Stamp
Stormwater Facilities \$	Community Review \$	Certifications expire December 31st of the third year of Certification or Authorization, whichever is earlier.
Wetlands/Natural Area \$	DCSM Review \$	
SE/SC \$	Fee-in-Lieu \$\$	
Total \$	Wetland BMP	
21. Final Approvals (See Certification letter for spe	ecial conditions and general conditions.)	
Community Certification		
	Approved by/title	
County Authorization		
	Approved by/title	


____ Community Copy _____ DuPage County SM Copy _____ Applicant Copy

Page 2 of 2

EXHIBIT 1B

LOCATION MAP

Naper Commons T39N, R10E, SEC. 32 WHEATON QUADRANGLE

PROJECT / CLIENT:

Pulte Home Company, LLC 1900 E. Golf Road, Suite 300 Schaumburg, IL 60173 847-230-5400

DRAWN BY:	ARF	9/13/20
CHECKED BY:		
APPROVED:		

SCALE: N.T.S.

EXHIBIT 1C

FIRM PANEL FM17043C0153J

Case No.: 20-05-3287P

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION **DETERMINATION DOCUMENT**

	COMMUNITY AND REVISION INFORMATION		PROJECT DESCRIPTION	BASIS OF REQUEST	
COMMUNIT	City of Wheaton DuPage County Illinois		NO PROJECT	HYDRAULIC ANALYSIS UPDATED TOPOGRAPHIC DATA	
	COMMUNITY NO.: 1702	21			
IDENTIFIER Rott Creek		APPROXIMATE LATITUDE & LONGITUDE: 41.823, -88.121 SOURCE: Other DATUM: NAD 83			
	ANNOTATED MAPPING	ENCLOSURES	ANNOTATE	D STUDY ENCLOSURES	
TYPE: FIRM		DATE: August 1, 2019 DATE: August 1, 2019	DATE OF EFFECTIVE FLOOD INS STILLWATER ELEVATION TAE		

* FIRM - Flood Insurance Rate Map

FLOODING SOURCE(S) & REVISED REACH(ES)

See Page 2 for Additional Flooding Sources

Hesterman Drain Area 3 - Approximately 2,000 feet south of Route 56 and approximately 2,000 feet west of Naperville Road

	SUMMARY OF REVISION	IS		
Flooding Source	Effective Flooding	Revised Flooding	Increases	Decreases
Hesterman Drain Area 3	BFEs* Zone AE Zone X (shaded)	BFEs Zone AE Zone X (shaded)	NONE NONE	YES YES YES

* BFEs - Base Flood Elevations

DETERMINATION

This document provides the determination from the Department of Homeland Security's Federal Emergency Management Agency (FEMA) regarding a request for a Letter of Map Revision (LOMR) for the area described above. Using the information submitted, we have determined that a revision to the flood hazards depicted in the Flood Insurance Study (FIS) report and/or National Flood Insurance Program (NFIP) map is warranted. This document revises the effective NFIP map, as indicated in the attached documentation. Please use the enclosed annotated map panels revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals in your community.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at http://www.fema.gov/flood-insurance.

> Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

20-05-3287P

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

OTHER FLOODING SOURCES AFFECTED BY THIS REVISION

FLOODING SOURCE(S) & REVISED REACH(ES)

Hesterman Drain Area 7 - Approximately 200 feet north of Route 56 and approximately 200 feet east of Orchard Road

	SUMMARY OF REVISIONS			
Flooding Source	Effective Flooding	Revised Flooding	Increases	Decreases
Hesterman Drain Area 7	Zone X (shaded)	Zone X (shaded)	YES	YES
	Zone AE	Zone AE	YES	NONE
	BFEs	BFEs	YES	NONE

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at http://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

20-05-3287P

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

OTHER COMMUNITIES AFFECTED BY THIS REVISION

CID Number: 170197 Name: DuPage County, Illinois

AFFECTED MAP PANELS

AFFECTED PORTIONS OF THE FLOOD INSURANCE STUDY REPORT

 TYPE:
 FIRM
 NO.:
 17043C0134J
 DATE:
 August 1, 2019

 TYPE:
 FIRM
 NO.:
 17043C0153J
 DATE:
 August 1, 2019

 STILLWATER ELEVATION TABLE:
 9

CID Number: 170213 Name: City of Naperville, Illinois

AFFECTED MAP PANELS AFFECTED PORTIONS OF THE FLOOD INSURANCE STUDY REPORT

 TYPE:
 FIRM
 NO.:
 17043C0134J
 DATE:
 August 1, 2019
 DATE OF EFFECTIVE FLOOD INSURANCE STUDY:
 August 1, 2019

 TYPE:
 FIRM
 NO.:
 17043C0153J
 DATE:
 August 1, 2019
 STILLWATER ELEVATION TABLE:
 9

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at http://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at http://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

20-05-3287P

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Mary Beth Caruso
Director, Mitigation Division
Federal Emergency Management Agency, Region V
536 South Clark Street, Sixth Floor
Chicago, IL 60605
(312) 408-5500

STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM and FIS report for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panel(s) and FIS report warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at http://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

20-05-3287P

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

PUBLIC NOTIFICATION OF REVISION

A notice of changes will be published in the *Federal Register*. This information also will be published in your local newspaper on or about the dates listed below, and through FEMA's Flood Hazard Mapping website at https://www.floodmaps.fema.gov/fhm/bfe status/bfe main.asp

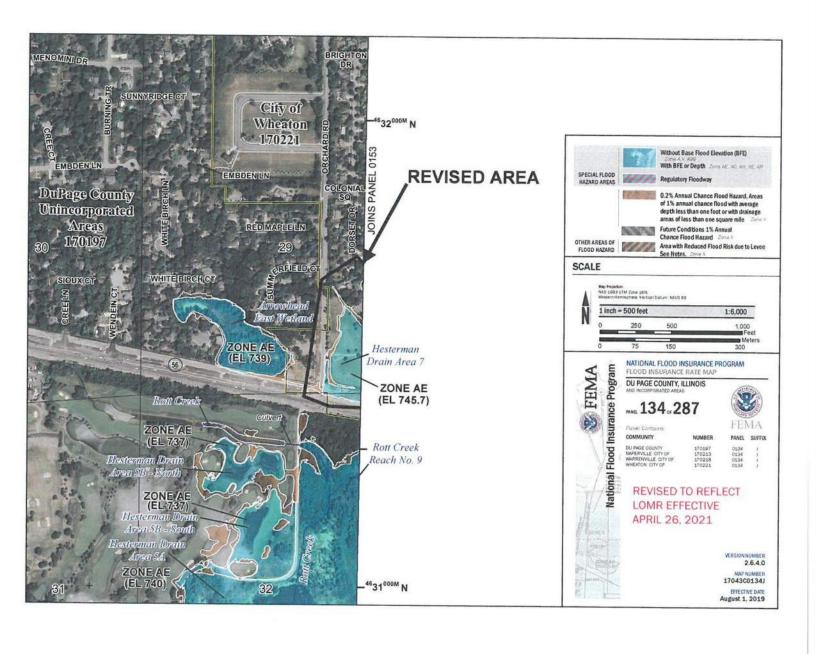
LOCAL NEWSPAPER

Name: Wheaton Suburban Life

Dates: December 18, 2020 and December 25, 2020

Within 90 days of the second publication in the local newspaper, any interested party may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90-day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised flood hazard determination presented in this LOMR may be changed.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at http://www.fema.gov/flood-insurance.


Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

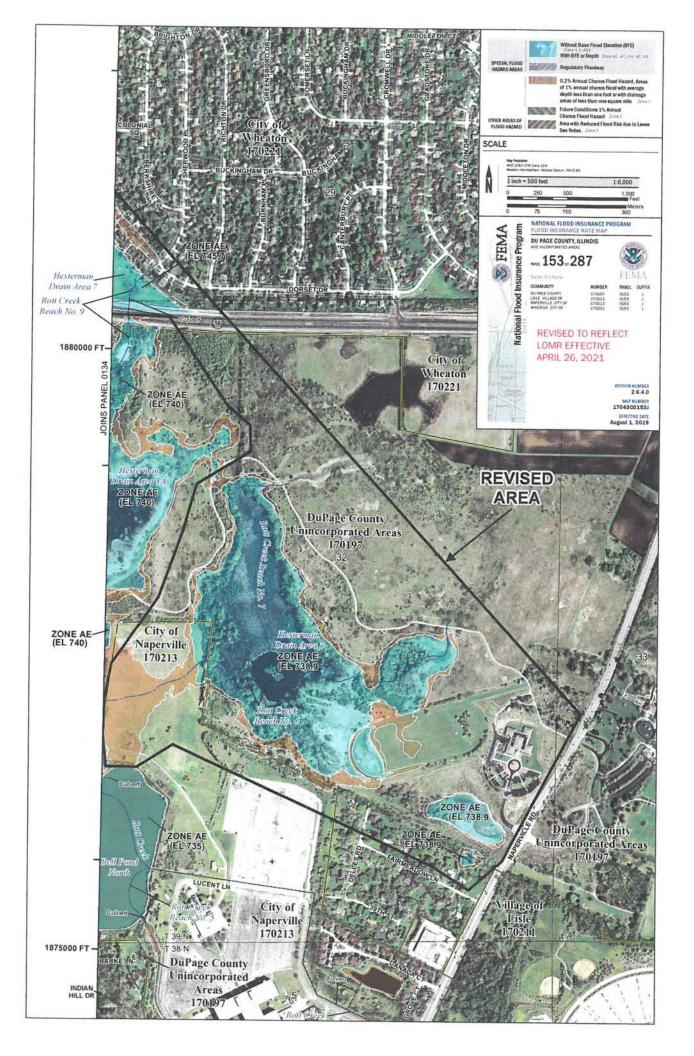
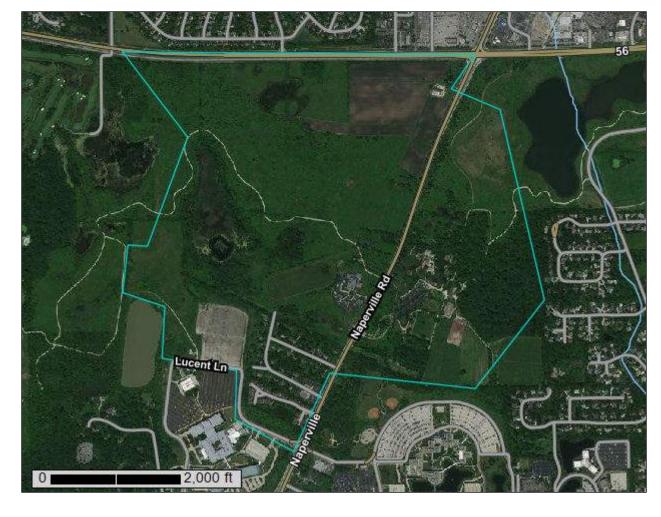

20-05-3287P

Table 9 - Summary of Stillwater Elevations - continued

	Elevation (feet NAVD 88)					
Location	10-Percent-	2-Percent-	1-Percent-	0.2-Percent-		
at Flooding Source	Annual-Chance	Annual-Chance	Annual-Chance	Annual-Chance		
	DuPage River Wa	itershed (EB) - co	ontinued			
Rott Creek (EBRC) - continued						
Upper Rott Creek Watershed						
At Arrowhead East Wetland	737.5	738.3	739.0	740.0		
At Bell Pond North	733.5	*	735.3	736.3		
At Bell Pond South	733.5	*	735.3	736.3		
At Hesterman Drain Area 2	*	*	740.3	741.3		
At Hesterman Drain Area 3	738.4	*	738.9	739.9		
At Hesterman Drain Area 4	737.6	*	739.5	740.5		
At Hesterman Drain Area 5A	738.4	739.5	739.5	740.5		
At Hesterman Drain Area 5B - North	735.4	736.6	737.4	738.4		
At Hesterman Drain Area 5B - South	735.4	736.6	737.4	738.4		
At Hesterman Drain Area 7	744.4	744.5	745.7	746.7		
	REVISED					
St. Joseph Creek (EBSJ)	DATA					
At Williams Port Pond	736.5	738.3	738.9	739.9		
St Joseph Creek Reach No. 11 (EBSJ)						
At Prince Pond	*	*	709.9	*		
At Rogers Street Ponding Area	*	*	710.0	*		
Could Mandaus (FDCM)						
Swift Meadows (EBSM) At Meadows Business Park	727.0	729.0	720.4	720.2		
At Meadows Business Park	727.0	728.0	728.4	729.2		
Swift Meadows Reach No. 2 (EBSM)						
At Chateau Medinah	734.8	735.0	735.1	735.3		
At Medinah Meadows	736.4	737.4	737.9	739.2		
At Vittoria Brooks	733.8	733.9	734.0	734.0		
At Willow Bridge	737.7	737.9	738.0	738.1		
	Fox River Water	shed (FR)				
Waubansee Creek (FRWA)						
At Lake #4: Along Waubansee Creek						
from just north of Liberty Road to just						
south of Meridian Parkway	*	*	693.8	*		
At Lake #5: Along Waubansee Creek						
from just north of Meridian Parkway to						
approximately 1,900 feet upstream of	ar.	190				
Meridian Parkway	*	*	695.7	*		
Neath Down L (CCDW)	Salt Creek Water	rshed (SC)				
North Branch (SCBW)	722.0	700 B	72.12			
At Lake Charles	722.0	723.8	724.2	724.9		
Devon Avenue Tributary (SCDA)						
At Midas Pond (North)	678.7	679.4	685.1	685.6		
At Midas Pond (South)	678.7	679.4	685.1	685.6		
*Data not available		REVISED TO	REFLECT			
one on the second of the secon						
		LOMR EFFEC	TIVE			

APRIL 26, 2021

EXHIBIT 1D


DUPAGE COUNTY SOILS MAP

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for DuPage County, Illinois

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
•	
Map Unit Department	
Map Unit Descriptions	
DuPage County, Illinois	
69A—Milford silty clay loam, 0 to 2 percent slopes	
146A—Elliott silt loam, 0 to 2 percent slopes	
189A—Martinton silt loam, 0 to 2 percent slopes	
192A—Del Rey silt loam, 0 to 2 percent slopes	
223C2—Varna silt loam, 4 to 6 percent slopes, eroded	
232A—Ashkum silty clay loam, 0 to 2 percent slopes	
298A—Beecher silt loam, 0 to 2 percent slopes	
298B—Beecher silt loam, 2 to 4 percent slopes	
330A—Peotone silty clay loam, 0 to 2 percent slopes	
443B—Barrington silt loam, 2 to 4 percent slopes	27
530B—Ozaukee silt loam, 2 to 4 percent slopes	
530C2—Ozaukee silt loam, 4 to 6 percent slopes, eroded	31
530D2—Ozaukee silt loam, 6 to 12 percent slopes, eroded	32
531B—Markham silt loam, 2 to 4 percent slopes	34
531C2—Markham silt loam, 4 to 6 percent slopes, eroded	35
614A—Chenoa silty clay loam, 0 to 2 percent slopes	37
698B—Grays silt loam, 2 to 4 percent slopes	
805B—Orthents, clayey, undulating	
830—Landfills	
1903A—Muskego and Houghton mucks, undrained, 0 to 2 percent	
slopes	42
W—Water	
Poforonoos	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

A Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

LEGEND

Spoil Area

Stony Spot

Very Stony Spot

∧ Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

00

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: DuPage County, Illinois Survey Area Data: Version 16, May 29, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 10, 2016—Oct 8, 2016

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
69A	Milford silty clay loam, 0 to 2 percent slopes	34.3	5.3%
146A	Elliott silt loam, 0 to 2 percent slopes	64.0	9.9%
189A	Martinton silt loam, 0 to 2 percent slopes	40.5	6.3%
192A	Del Rey silt loam, 0 to 2 percent slopes	0.0	0.0%
223C2	Varna silt loam, 4 to 6 percent slopes, eroded	12.7	2.0%
232A	Ashkum silty clay loam, 0 to 2 percent slopes	105.0	16.2%
298A	Beecher silt loam, 0 to 2 percent slopes	24.7	3.8%
298B	Beecher silt loam, 2 to 4 percent slopes	1.6	0.2%
330A	Peotone silty clay loam, 0 to 2 percent slopes	39.5	6.1%
443B	Barrington silt loam, 2 to 4 percent slopes	7.8	1.2%
530B	Ozaukee silt loam, 2 to 4 percent slopes	1.0	0.2%
530C2	Ozaukee silt loam, 4 to 6 percent slopes, eroded	22.5	3.5%
530D2	Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.1	0.5%
531B	Markham silt loam, 2 to 4 percent slopes	127.5	19.7%
531C2	Markham silt loam, 4 to 6 percent slopes, eroded	37.8	5.8%
614A	Chenoa silty clay loam, 0 to 2 percent slopes	0.2	0.0%
698B	Grays silt loam, 2 to 4 percent slopes	35.8	5.5%
805B	Orthents, clayey, undulating	49.8	7.7%
830	Landfills	10.3	1.6%
1903A	Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	26.2	4.1%
W	Water	2.2	0.3%
Totals for Area of Interest		646.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas

shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

DuPage County, Illinois

69A—Milford silty clay loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2smzk

Elevation: 510 to 930 feet

Mean annual precipitation: 34 to 40 inches Mean annual air temperature: 46 to 54 degrees F

Frost-free period: 155 to 190 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Milford, drained, and similar soils: 93 percent

Minor components: 7 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Milford, Drained

Setting

Landform: Depressions on lake plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf, dip

Down-slope shape: Linear, concave Across-slope shape: Linear, concave Parent material: Clayey lacustrine deposits

Typical profile

Ap - 0 to 9 inches: silty clay loam A - 9 to 22 inches: silty clay

Bg - 22 to 50 inches: silty clay loam

Cg - 50 to 60 inches: stratified sandy loam to silty clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Ecological site: R110XY008IL - Wet Glacial Drift Upland Prairie

Hydric soil rating: Yes

Minor Components

Peotone, drained

Percent of map unit: 5 percent

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Urban land

Percent of map unit: 1 percent Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Orthents, clayey

Percent of map unit: 1 percent

Landform: Ground moraines, lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

146A—Elliott silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2sss0

Elevation: 570 to 930 feet

Mean annual precipitation: 33 to 42 inches
Mean annual air temperature: 46 to 54 degrees F

Frost-free period: 150 to 200 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Elliott and similar soils: 94 percent Minor components: 6 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Elliott

Setting

Landform: Till plains, ground moraines

Landform position (two-dimensional): Footslope, summit

Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Thin mantle of loess or other silty material over silty clay loam till

Typical profile

Ap - 0 to 6 inches: silt loam
A - 6 to 11 inches: silty clay loam
Bt1 - 11 to 16 inches: silty clay
2Bt2 - 16 to 41 inches: silty clay loam
2Cd - 41 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: 29 to 45 inches to densic material

Drainage class: Somewhat poorly drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2s

Hydrologic Soil Group: C/D

Ecological site: R110XY007IL - Moist Glacial Drift Upland Prairie, R111DY012IN -

Till Ridge Prairie Hydric soil rating: No

Minor Components

Ashkum, drained

Percent of map unit: 4 percent

Landform: Ground moraines, till plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Orthents, clayey

Percent of map unit: 1 percent

Landform: Ground moraines, till plains

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Urban land

Percent of map unit: 1 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

189A—Martinton silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 64sv Elevation: 510 to 980 feet

Mean annual precipitation: 28 to 40 inches
Mean annual air temperature: 45 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Martinton and similar soils: 92 percent

Minor components: 8 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Martinton

Setting

Landform: Lake plains

Landform position (two-dimensional): Summit, footslope

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Lacustrine deposits

Typical profile

H1 - 0 to 12 inches: silt loam

H2 - 12 to 39 inches: silty clay loam

H3 - 39 to 60 inches: stratified sandy loam to silty clay

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent Available water capacity: High (about 10.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 1

Hydrologic Soil Group: C/D

Ecological site: R110XY007IL - Moist Glacial Drift Upland Prairie

Hydric soil rating: No

Minor Components

Milford

Percent of map unit: 4 percent

Landform: Lake plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R110XY008IL - Wet Glacial Drift Upland Prairie

Hydric soil rating: Yes

Urban land

Percent of map unit: 2 percent Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Orthents, clayey

Percent of map unit: 2 percent

Landform: Ground moraines, lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

192A—Del Rey silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 64sz Elevation: 510 to 980 feet

Mean annual precipitation: 28 to 40 inches Mean annual air temperature: 45 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Del rey and similar soils: 92 percent Minor components: 8 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Del Rey

Setting

Landform: Lake plains

Landform position (two-dimensional): Summit, footslope

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Lacustrine deposits

Typical profile

H1 - 0 to 4 inches: silt loam
H2 - 4 to 9 inches: silt loam
H3 - 9 to 33 inches: silty clay
H4 - 33 to 41 inches: silty clay loam
H5 - 41 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent Available water capacity: Moderate (about 8.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Ecological site: F110XY012IL - Moist Glacial Drift Upland Forest

Hydric soil rating: No

Minor Components

Orthents, clayey

Percent of map unit: 2 percent

Landform: Ground moraines, lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Milford

Percent of map unit: 2 percent

Landform: Lake plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R110XY008IL - Wet Glacial Drift Upland Prairie

Hydric soil rating: Yes

Montgomery

Percent of map unit: 2 percent

Landform: Swales

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY008IL - Wet Glacial Drift Upland Prairie

Hydric soil rating: Yes

Urban land

Percent of map unit: 2 percent Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

223C2—Varna silt loam, 4 to 6 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2yrqw

Elevation: 520 to 950 feet

Mean annual precipitation: 34 to 42 inches
Mean annual air temperature: 46 to 54 degrees F

Frost-free period: 140 to 185 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Varna, eroded, and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Varna, Eroded

Setting

Landform: Ground moraines, end moraines

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loess over silty clay loam or clay loam till

Typical profile

Ap - 0 to 9 inches: silt loam

2Bt1 - 9 to 30 inches: silty clay loam 2Bt2 - 30 to 48 inches: silty clay loam 2Cd - 48 to 60 inches: silty clay loam

Properties and qualities

Slope: 4 to 6 percent

Depth to restrictive feature: 24 to 55 inches to densic material

Drainage class: Moderately well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Moderate (about 7.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C

Ecological site: R110XY007IL - Moist Glacial Drift Upland Prairie, R108AY006IL -

Loess Upland Prairie

Hydric soil rating: No

Minor Components

Ashkum, drained

Percent of map unit: 6 percent

Landform: Ground moraines, end moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Orthents, clayey

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

Urban land

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

232A—Ashkum silty clay loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2ssrw Elevation: 520 to 930 feet

Mean annual precipitation: 33 to 41 inches
Mean annual air temperature: 46 to 54 degrees F

Frost-free period: 160 to 190 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Ashkum, drained, and similar soils: 92 percent

Minor components: 8 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ashkum, Drained

Setting

Landform: Ground moraines, end moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Concave

Parent material: Clayey colluvium over till

Typical profile

Ap - 0 to 12 inches: silty clay loam Bg1 - 12 to 29 inches: silty clay 2Bg2 - 29 to 54 inches: silty clay loam 2Cg - 54 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum content: 25 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Minor Components

Peotone, drained

Percent of map unit: 5 percent

Landform: Depressions on ground moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Orthents, clayey

Percent of map unit: 2 percent

Landform: Lake plains, ground moraines Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Urban land

Percent of map unit: 1 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

298A—Beecher silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2ytq0 Elevation: 520 to 900 feet

Mean annual precipitation: 34 to 41 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 160 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Beecher and similar soils: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Beecher

Setting

Landform: Ground moraines, end moraines

Landform position (two-dimensional): Footslope, summit

Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loess over silty clay loam or clay loam till

Typical profile

Ap - 0 to 13 inches: silt loam

2Bt1 - 13 to 21 inches: silty clay loam 2Bt2 - 21 to 37 inches: silty clay loam 2Cd - 37 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: 24 to 45 inches to densic material

Drainage class: Somewhat poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Low (about 5.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Ashkum, drained

Percent of map unit: 6 percent

Landform: End moraines, ground moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: Yes

Urban land

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Orthents, clayey

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

298B—Beecher silt loam, 2 to 4 percent slopes

Map Unit Setting

National map unit symbol: 2ytq1 Elevation: 520 to 960 feet

Mean annual precipitation: 34 to 41 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 160 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Beecher and similar soils: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Beecher

Setting

Landform: Ground moraines, end moraines

Landform position (two-dimensional): Footslope, backslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loess over silty clay loam or clay loam till

Typical profile

Ap - 0 to 13 inches: silt loam

2Bt1 - 13 to 21 inches: silty clay loam 2Bt2 - 21 to 37 inches: silty clay loam 2Cd - 37 to 60 inches: silty clay loam

Properties and qualities

Slope: 2 to 4 percent

Depth to restrictive feature: 24 to 45 inches to densic material

Drainage class: Somewhat poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Low (about 5.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Ashkum, drained

Percent of map unit: 6 percent

Landform: End moraines, ground moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Hydric soil rating: Yes

Urban land

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Orthents, clayey

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

330A—Peotone silty clay loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2sn05 Elevation: 500 to 1.020 feet

Mean annual precipitation: 33 to 43 inches Mean annual air temperature: 46 to 55 degrees F

Frost-free period: 140 to 195 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Peotone, drained, and similar soils: 95 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Peotone, Drained

Setting

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Silty and clayey colluvium

Typical profile

Ap - 0 to 7 inches: silty clay loam
Bg1 - 7 to 27 inches: silty clay loam
Bg2 - 27 to 50 inches: silty clay
Cg - 50 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum content: 20 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: High (about 9.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Minor Components

Peotone, long duration ponding

Percent of map unit: 5 percent

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

443B—Barrington silt loam, 2 to 4 percent slopes

Map Unit Setting

National map unit symbol: 64vm Elevation: 510 to 1,020 feet

Mean annual precipitation: 28 to 40 inches
Mean annual air temperature: 45 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Barrington and similar soils: 92 percent

Minor components: 8 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Barrington

Setting

Landform: Stream terraces, lake plains, outwash plains Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Interfluve, tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loess or other silty material and in the underlying outwash

Typical profile

H1 - 0 to 11 inches: silt loam
H2 - 11 to 32 inches: silty clay loam
H3 - 32 to 42 inches: silt loam

H4 - 42 to 60 inches: stratified fine sand to silt loam

Properties and qualities

Slope: 2 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent Available water capacity: High (about 10.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: R110XY007IL - Moist Glacial Drift Upland Prairie

Hydric soil rating: No

Minor Components

Drummer

Percent of map unit: 4 percent

Landform: Outwash plains, ground moraines
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R108AY013IL - Wet Outwash Prairie, R110XY008IL - Wet Glacial

Drift Upland Prairie

Hydric soil rating: Yes

Pella

Percent of map unit: 2 percent

Landform: Outwash plains, ground moraines, lake plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R110XY008IL - Wet Glacial Drift Upland Prairie

Hydric soil rating: Yes

Orthents, loamy

Percent of map unit: 1 percent

Landform: Outwash plains, ground moraines, lake plains Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Urban land

Percent of map unit: 1 percent Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

530B—Ozaukee silt loam, 2 to 4 percent slopes

Map Unit Setting

National map unit symbol: 2sn06

Elevation: 550 to 980 feet

Mean annual precipitation: 35 to 41 inches Mean annual air temperature: 47 to 52 degrees F

Frost-free period: 140 to 185 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Ozaukee and similar soils: 94 percent

Minor components: 6 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ozaukee

Settina

Landform: End moraines, ground moraines

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Thin mantle of loess over silty clay loam till

Typical profile

Ap - 0 to 4 inches: silt loam BE - 4 to 10 inches: silt loam

2Bt1 - 10 to 21 inches: silty clay 2Bt2 - 21 to 39 inches: silty clay loam 2Cd - 39 to 60 inches: silty clay loam

Properties and qualities

Slope: 2 to 4 percent

Depth to restrictive feature: 23 to 45 inches to densic material

Drainage class: Moderately well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Low (about 5.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F110XY012IL - Moist Glacial Drift Upland Forest

Hydric soil rating: No

Minor Components

Ashkum, drained

Percent of map unit: 4 percent

Landform: Ground moraines, end moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Urban land

Percent of map unit: 1 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Orthents, clayey

Percent of map unit: 1 percent Landform: Ground moraines

Landform position (two-dimensional): Backslope, summit

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

530C2—Ozaukee silt loam, 4 to 6 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2sn07

Elevation: 540 to 980 feet

Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 47 to 53 degrees F

Frost-free period: 140 to 185 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Ozaukee, eroded, and similar soils: 96 percent

Minor components: 4 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ozaukee, Eroded

Setting

Landform: End moraines, ground moraines

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Thin mantle of loess over silty and clayey till

Typical profile

Ap - 0 to 7 inches: silt loam

2Bt1 - 7 to 26 inches: silty clay

2Bt2 - 26 to 37 inches: silty clay loam

2Cd - 37 to 60 inches: silty clay loam

Properties and qualities

Slope: 4 to 6 percent

Depth to restrictive feature: 22 to 45 inches to densic material

Drainage class: Moderately well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C

Ecological site: F110XY011IL - Dry Glacial Drift Upland Forest

Hydric soil rating: No

Minor Components

Orthents, clayey

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Urban land

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

530D2—Ozaukee silt loam, 6 to 12 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2sn0j Elevation: 520 to 1,000 feet

Mean annual precipitation: 31 to 42 inches Mean annual air temperature: 46 to 53 degrees F

Frost-free period: 135 to 195 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Ozaukee, eroded, and similar soils: 93 percent

Minor components: 7 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ozaukee, Eroded

Setting

Landform: End moraines, ground moraines

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loess over wisconsinan age silty and clayey till

Typical profile

Ap - 0 to 7 inches: silt loam

Bt1 - 7 to 11 inches: silty clay loam

2Bt2 - 11 to 27 inches: silty clay

2BCt - 27 to 32 inches: silty clay loam 2Cd - 32 to 60 inches: silty clay loam

Properties and qualities

Slope: 6 to 12 percent

Depth to restrictive feature: 22 to 39 inches to densic material

Drainage class: Moderately well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C

Ecological site: F110XY011IL - Dry Glacial Drift Upland Forest Other vegetative classification: Trees/Timber (Woody Vegetation)

Hydric soil rating: No

Minor Components

Blount, lake michigan lobe

Percent of map unit: 3 percent

Landform: End moraines, ground moraines

Landform position (two-dimensional): Footslope, summit

Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: F110XY012IL - Moist Glacial Drift Upland Forest Other vegetative classification: Trees/Timber (Woody Vegetation)

Hydric soil rating: No

Urban land

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Ozaukee, severely eroded

Percent of map unit: 2 percent

Landform: End moraines, ground moraines

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Linear

Ecological site: F110XY012IL - Moist Glacial Drift Upland Forest Other vegetative classification: Trees/Timber (Woody Vegetation)

Hydric soil rating: No

531B—Markham silt loam, 2 to 4 percent slopes

Map Unit Setting

National map unit symbol: 2ytpr Elevation: 540 to 900 feet

Mean annual precipitation: 34 to 41 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 160 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Markham and similar soils: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Markham

Setting

Landform: Ground moraines, end moraines

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loess over silty clay loam till

Typical profile

Ap - 0 to 8 inches: silt loam

2Bt1 - 8 to 21 inches: silty clay loam 2Bt2 - 21 to 32 inches: silty clay loam 2Cd - 32 to 60 inches: silty clay loam

Properties and qualities

Slope: 2 to 4 percent

Depth to restrictive feature: 20 to 55 inches to densic material

Drainage class: Moderately well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: R110XY010IL - Moist Glacial Drift Upland Savanna

Hydric soil rating: No

Minor Components

Ashkum, drained

Percent of map unit: 6 percent

Landform: Ground moraines, end moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Orthents, clayey

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Backslope, summit

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

Urban land

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

531C2—Markham silt loam, 4 to 6 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2ytps Elevation: 620 to 920 feet

Mean annual precipitation: 34 to 41 inches

Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 160 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Markham, eroded, and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Markham, Eroded

Setting

Landform: Ground moraines, end moraines

Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Loess over silty clay loam till

Typical profile

Ap - 0 to 8 inches: silt loam

2Bt1 - 8 to 21 inches: silty clay loam 2Bt2 - 21 to 32 inches: silty clay loam 2Cd - 32 to 60 inches: silty clay loam

Properties and qualities

Slope: 4 to 6 percent

Depth to restrictive feature: 20 to 55 inches to densic material

Drainage class: Moderately well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C

Ecological site: R110XY010IL - Moist Glacial Drift Upland Savanna

Hydric soil rating: No

Minor Components

Ashkum, drained

Percent of map unit: 6 percent

Landform: Ground moraines, end moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Orthents, clayey

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Backslope, summit

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Urban land

Percent of map unit: 2 percent Landform: Ground moraines

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

614A—Chenoa silty clay loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2t706

Elevation: 590 to 800 feet

Mean annual precipitation: 34 to 40 inches Mean annual air temperature: 48 to 53 degrees F

Frost-free period: 155 to 190 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Chenoa and similar soils: 94 percent Minor components: 6 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chenoa

Settina

Landform: Ground moraines, end moraines

Landform position (two-dimensional): Summit, footslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear Parent material: Loess over till

Typical profile

Ap - 0 to 12 inches: silty clay loam Btg - 12 to 32 inches: silty clay loam 2Bt - 32 to 36 inches: silty clay loam 2C - 36 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Ecological site: R110XY007IL - Moist Glacial Drift Upland Prairie, R108AY006IL -

Loess Upland Prairie

Hydric soil rating: No

Minor Components

Elpaso, drained

Percent of map unit: 3 percent Landform: Ground moraines, swales

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R108AY007IL - Wet Loess Upland Prairie, R108AY008IL - Ponded Loess Sedge Meadow, R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

Ashkum, drained

Percent of map unit: 3 percent Landform: Ground moraines, swales

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY024IL - Ponded Depressional Sedge Meadow

Hydric soil rating: Yes

698B—Grays silt loam, 2 to 4 percent slopes

Map Unit Setting

National map unit symbol: 64wn Elevation: 510 to 1,020 feet

Mean annual precipitation: 28 to 40 inches Mean annual air temperature: 45 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Grays and similar soils: 92 percent Minor components: 8 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Grays

Setting

Landform: Outwash plains, stream terraces, lake plains

Landform position (two-dimensional): Summit, backslope Landform position (three-dimensional): Interfluve, tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loess or other silty material and in the underlying outwash

Typical profile

H1 - 0 to 8 inches: silt loam
H2 - 8 to 11 inches: silt loam
H3 - 11 to 34 inches: silty clay loam

H4 - 34 to 42 inches: loam

H5 - 42 to 60 inches: stratified loamy sand to silt loam

Properties and qualities

Slope: 2 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent Available water capacity: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: R110XY010IL - Moist Glacial Drift Upland Savanna

Hydric soil rating: No

Minor Components

Urban land

Percent of map unit: 2 percent Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Drummer

Percent of map unit: 2 percent

Landform: Outwash plains, ground moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R108AY013IL - Wet Outwash Prairie, R110XY008IL - Wet Glacial

Drift Upland Prairie

Hydric soil rating: Yes

Pella

Percent of map unit: 2 percent

Landform: Outwash plains, ground moraines, lake plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R110XY008IL - Wet Glacial Drift Upland Prairie

Hydric soil rating: Yes

Orthents, loamy

Percent of map unit: 2 percent

Landform: Outwash plains, ground moraines, lake plains Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

805B—Orthents, clayey, undulating

Map Unit Setting

National map unit symbol: 64wv

Elevation: 510 to 980 feet

Mean annual precipitation: 28 to 40 inches Mean annual air temperature: 45 to 54 degrees F

Frost-free period: 140 to 190 days

Farmland classification: Not prime farmland

Map Unit Composition

Orthents, clayey, undulating, and similar soils: 91 percent

Minor components: 9 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Orthents, Clayey, Undulating

Setting

Landform: Lake plains, ground moraines

Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex Parent material: Earthy fill

Typical profile

H1 - 0 to 7 inches: silty clay H2 - 7 to 60 inches: silty clay

Properties and qualities

Slope: 1 to 6 percent

Depth to restrictive feature: 4 to 10 inches to densic material

Drainage class: Moderately well drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Moderately low (0.02 to

0.06 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 25 percent Available water capacity: Very low (about 0.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Ashkum

Percent of map unit: 3 percent

Landform: Ground moraines, end moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY008IL - Wet Glacial Drift Upland Prairie

Hydric soil rating: Yes

Urban land

Percent of map unit: 3 percent Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Bryce

Percent of map unit: 2 percent

Landform: Glacial lakes (relict), ground moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Concave

Ecological site: R110XY008IL - Wet Glacial Drift Upland Prairie

Hydric soil rating: Yes

Aquents, clayey

Percent of map unit: 1 percent

Landform: Lake plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

830—Landfills

Map Unit Setting

National map unit symbol: 64s5 Elevation: 680 to 1,020 feet

Mean annual precipitation: 28 to 40 inches Mean annual air temperature: 45 to 52 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Not prime farmland

Map Unit Composition

Orthents, landfill: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Orthents, Landfill

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: Unranked

1903A—Muskego and Houghton mucks, undrained, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 64sx Elevation: 510 to 930 feet

Mean annual precipitation: 28 to 40 inches Mean annual air temperature: 45 to 52 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Not prime farmland

Map Unit Composition

Muskego and similar soils: 50 percent Houghton and similar soils: 45 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Muskego

Setting

Landform: Ground moraines, outwash plains, depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave

Across-slope shape: Concave

Parent material: Herbaceous organic material over coprogenic material

Typical profile

O1 - 0 to 5 inches: muck O2 - 5 to 27 inches: muck

L3 - 27 to 60 inches: coprogenous silt loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 0 to 6 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum content: 60 percent Available water capacity: Very high (about 17.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: C/D

Ecological site: R110XY021IL - Ponded Organic Alkaline Peatland, R110XY024IL - Ponded Depressional Sedge Meadow, R110XY020IL - Ponded Organic

Acidic Peatland Hydric soil rating: Yes

Description of Houghton

Setting

Landform: Depressions, ground moraines, outwash plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Herbaceous organic material

Typical profile

O1 - 0 to 19 inches: muck O2 - 19 to 60 inches: muck

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 6.00 in/hr)

Depth to water table: About 0 to 6 inches

Frequency of flooding: None Frequency of ponding: Frequent

Available water capacity: Very high (about 23.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: A/D

Ecological site: R110XY021IL - Ponded Organic Alkaline Peatland, R110XY024IL - Ponded Depressional Sedge Meadow, R110XY020IL - Ponded Organic

Acidic Peatland Hydric soil rating: Yes

Minor Components

Drummer

Percent of map unit: 5 percent

Landform: Outwash plains, ground moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R110XY008IL - Wet Glacial Drift Upland Prairie

Hydric soil rating: Yes

W-Water

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Water

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8w

Hydric soil rating: Unranked

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

EXHIBIT 1E

NATIONAL WETLANDS INVENTORY MAP

U.S. Fish and Wildlife Service **National Wetlands Inventory**

Nokia Site

November 9, 2018

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake

Riverine

Other

Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

EXHIBIT 1F

RELEVANT PERMITS

One Natural Resources Way Springfield, Illinois 62702-1271 http://dnr.state.il.us

Colleen Callahan, Director

JB Pritzker, Governor

May 01, 2019

Alicia Metzger V3 Companies 7325 Janes Ave. Woodridge, IL 60517

RE: 1960 & 2000 Lucent Ln and Vacant Prop to NW

Project Number(s): 1910300 [19112]

County: DuPage

Dear Applicant:

This letter is in reference to the project you recently submitted for consultation. The natural resource review provided by EcoCAT identified protected resources that may be in the vicinity of the proposed action. The Department has evaluated this information and concluded that adverse effects are unlikely. Therefore, consultation under 17 Ill. Adm. Code Part 1075 is terminated.

This consultation is valid for two years unless new information becomes available that was not previously considered; the proposed action is modified; or additional species, essential habitat, or Natural Areas are identified in the vicinity. If the project has not been implemented within two years of the date of this letter, or any of the above listed conditions develop, a new consultation is necessary.

The natural resource review reflects the information existing in the Illinois Natural Heritage Database at the time of the project submittal, and should not be regarded as a final statement on the site being considered, nor should it be a substitute for detailed site surveys or field surveys required for environmental assessments. If additional protected resources are encountered during the project's implementation, you must comply with the applicable statutes and regulations. Also, note that termination does not imply IDNR's authorization or endorsement of the proposed action.

Please contact me if you have questions regarding this review.

Justin Dillard

Division of Ecosystems and Environment

217-785-5500

Illinois Department of Natural Resources

JB Pritzker, Governor

Colleen Callahan, Director

One Natural Resources Way Springfield, Illinois 62702-1271 www.dnr.illinois.gov Mailing Address: 1 Old State Capitol Plaz

Mailing Address: 1 Old State Capitol Plaza, Springfield, IL 62701

FAX (217) 524-7525

DuPage County Naperville

Demolition and New Construction of a Single Family & Townhomes, Nokia Site West side of Naperville Road at Lucent Ln. then NW to West of Delles Rd. CEMCON-402.138
SHPO Log #017080520

September 10, 2020

Jonathon Helck CEMCON, Ltd. 2280 White Oak Circle, Suite 100 Aurora, IL 60502-9675

Dear Mr. Helck:

This letter is to inform you that we have reviewed the information provided concerning the referenced project.

Our review of the records indicates that no known historic, or historically significant architectural properties exist within the project area. This project area is exempt from archaeological review in accordance with Section 6 of the Illinois State Agency Historic Resources Preservation Act (20 ILCS 3420/1 et. seq.).

Please note that the state law is less restrictive than the federal cultural resource laws concerning archaeology. If your project will use federal loans or grants, need federal agency permits, use federal property, or involve assistance from a federal agency, then your project must be reviewed under the National Historic Preservation Act of 1966, as amended. Please notify us immediately if such is the case.

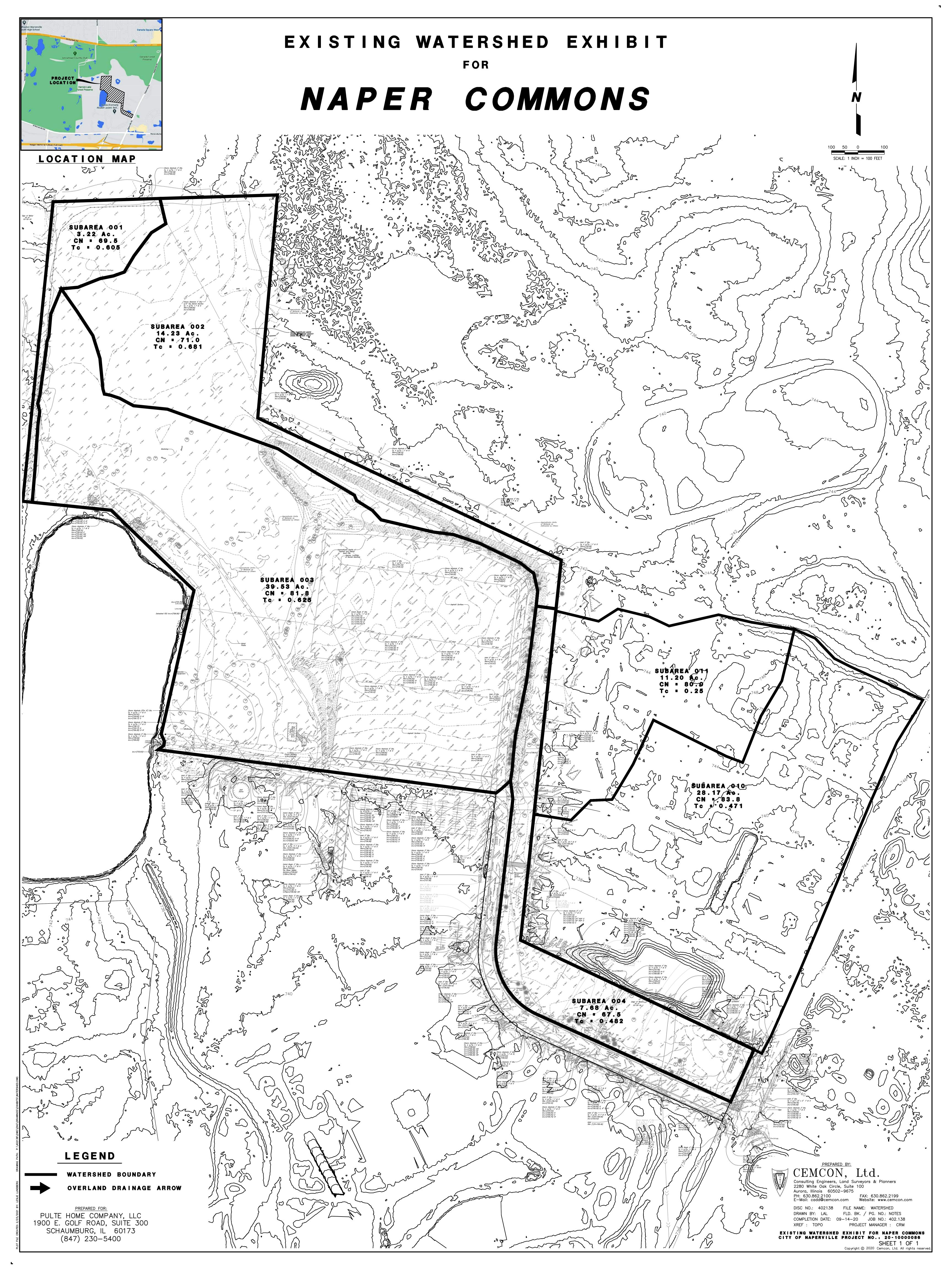
Please retain this letter in your files as evidence of compliance with Section 4 of the Illinois State Agency Historic Resources Preservation Act.

If you have any questions, please call 217/782-4836.

ta. ayl

Sincerely,

Robert F. Appleman Deputy State Historic


Preservation Officer

TAB 2

STORMWATER SUBMITTAL

EXHIBIT 2A

EXISTING CONDITIONS WATERSHED EXHIBIT

EXHIBIT 2B

EXISTING CONDITIONS SUPPORTING DOCUMENTATION

Project Location	Nokia Site DuPage County, IL	By Checked		МН	Date Date	9/9/2020
Circle one:	resent Developed		SUBAREA	. 001		
1. Runoff curve nu	imber (CN)					
			CN 1/		Area	
Soil Name and Hydroogic Group	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	_X_ acres mi2 %	Product of CN x Area
С	Meadow	71			1.40	99.4
С	Brush (good condition)	65			0.57	37.05
С	Woods (good condition)	70			1.25	87.5
1/ Use only one Cl	N source per line.	<u> </u>	Totals =		3.22	223.950
	Total Product		223.950			
CN (weighted) =	Total Area	=	3.220	=	69.550	
				Use CN =	69.5	
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		yr in			

Runoff, Q

Project Location	Nokia Site DuPage County, IL	_ By _ Checked		ИН	Date _ Date _	9/9/2020
Circle one:	esent Developed		SUBAREA	002		
1. Runoff curve nu	mber (CN)					
			CN <u>1/</u>		Area	
Soil Name and Hydroogic Group	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	_X_ acres mi2 %	Product of CN x Area
С	Meadow	71			2.22	157.62
С	Brush (good condition)	65			3.95	256.75
С	Open Space (good condition)	74			8.06	596.44
1/ Use only one CN	I source per line.	-	Totals =		14.23	1010.810
CN (weighted) =	Total Product	_	1010.810		71.034	
,	Total Area		14.230			
				Use CN =	71.0	
2. Runoff						
	Fraguancy		\	Storm #1	Storm #2	Storm #3
	Frequency		yr in			
	Runoff, Q		in			

Project Location	Nokia Site DuPage County, IL	By Checked		ИΗ	Date Date	9/9/2020
Circle one:	resent Developed		SUBAREA	003		
1. Runoff curve nu	mber (CN)					
			CN 1/		Area	
Soil Name and Hydroogic Group	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	_X_ acres mi2 %	Product of CN x Area
С	Impervious Area (Paving, gravel)	98			15.09	1478.82
С	Brush (good condition)	65			6.13	398.45
С	Open Space (good condition)	74			18.31	1354.94
1/ Use only one Cf	N source per line.	<u> </u>	Totals =		39.53	3232.210
ON (Total Product		3232.210		04.700	
CN (weighted) =	Total Area	=	39.530	=	81.766	
				Use CN =	81.8	
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		yr in			

Runoff, Q

Project Location	Nokia Site DuPage County, IL	By Checked		ΜΗ	Date Date	
Circle one:	resent Developed		SUBAREA	. 004		
1. Runoff curve nu	mber (CN)					
			CN 1/		Area	
Soil Name and Hydroogic Group	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	_X_ acres mi2 %	Product of CN x Area
С	Brush (good condition)	65			5.51	358.15
С	Open Space (good condition)	74			2.17	160.58
1/ Use only one CN	N source per line.		Totals =		7.68	518.730
CN (weighted) =	Total Product		518.730		67.543	
(g)	Total Area		7.680			
				Use CN =	67.5	
2. Runoff						
	Frequency		. yr	Storm #1	Storm #2	Storm #3
	Rainfall		-			

Runoff, Q

Project Location	Nokia Site DuPage County, IL	By Checked		ИΗ	Date Date	
Circle one:	resent Developed		SUBAREA	. 010		
1. Runoff curve nu	mber (CN)					
			CN 1/		Area	r
Soil Name and Hydroogic Group	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	_X_ acres mi2 %	Product of CN x Area
С	Woods - Grass Combination (good condition)	72	-	-	2.89	208.08
С	Brush (good condition)	65			1.29	83.85
С	Residential District: 1/8 Ac. Lots (townhomes)	90			8.32	748.8
С	Residential District: 1/2 Ac. Lots (single-family)	80			12.02	961.6
С	Impervious Area (paving, standing water)	98			3.65	357.7
1/ Use only one CN	N source per line.	<u>!</u>	Totals =		28.17	2360.030
CN (weighted) =	Total Product		2360.030		83.778	
ON (Weighted) =	Total Area	_	28.170	-		ı
				Use CN =	83.8	
2. Runoff						
	Frequency		yr	Storm #1	Storm #2	Storm #3
	Rainfall		in			<u> </u>

Runoff, Q

Project Location	Nokia Site DuPage County, IL	By Checked		ΜΗ	Date Date	
Circle one:	resent Developed		SUBAREA	. 011		
1. Runoff curve nu	imber (CN)					
			CN 1/		Area	
Soil Name and Hydroogic Group	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	_X_ acres mi2 %	Product of CN x Area
С	Residential District: 1/2 Ac. Lots (single-family)	80			11.20	896
1/ Use only one Cl	N source per line.	- !	Totals =		11.20	896.000
011/ 11/ 1	Total Product		896.000		00.000	
CN (weighted) =	= Total Area	=	11.200	=	80.000	
				Use CN =	80.0	
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		-			
	Rainfall		. in	1	1	

Runoff, Q

Project NOKIA SITE Location DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/4/2020
Check one:		SUBAREA 001			
NOTES: Space for as many as two segments per flow ty Include a map. schematic, or description of flow			ch worksheet.		
Sheet Flow (Applicable to Tc only) Segm	nent ID			\exists	
1. Surface Description (Table 3-1)		Grass		7	
2. Manning's roughness coeff., n (Table 3-1)		0.24			
 Flow length, L (total L ≤ 300 ft) 	ft	100			
4. Two-yr 24-hr rainfall, P ₂	in	3.34			
5. Land slope, s	ft/ft	0.002			
6. 0.007 (nL) ^{0.8}	hr	0.585	+	=	0.585
6. $Tc = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$					
Shallow Concentrated Flow Segm	nent ID			7	
7. Surface description (paved or unpaved)		unpaved			
8. Flow length, L		100			
9. Watercourse slope, s		0.007			
10. Average velocity, V (figure 3-1)		1.36			
	hr	0.020	+	=	0.020
11. $T_{t} = \frac{L}{3600 \text{ V}}$				_	
<u>Channel Flow</u> Segm	nent ID			7	
12. Cross sectional flow area, a	ft ²				
13. Wetted perimeter, pw	ft				
14. Hydraulic radius, r= a/pw compute r	ft				
15. Channel Slope, s	ft/ft				
16. Manning's roughness coeff., n					
17. V= 1.49 $r^{2/3} s^{1/2} / n$	ft/s	3			
18. Flow length, L	ft				-
19 L	hr		+	=	
T₁=					
20. Watershed or subarea T_c or T_t (add T_t in st	teps 6,	11, and 19)		hr	0.605
				min	36

Project NOKIA SITE Location DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/4/2020
Check one:		SUBAREA 002	2		
NOTES: Space for as many as two segments per flow ty Include a map. schematic, or description of flow			ch worksheet.		
Sheet Flow (Applicable to Tc only) Segm	nent ID				
1. Surface Description (Table 3-1)		Grass			
2. Manning's roughness coeff., n (Table 3-1)		0.24			
 Flow length, L (total L ≤ 300 ft) 	ft	100			
4. Two-yr 24-hr rainfall, P ₂	in	3.34			
5. Land slope, s	ft/ft	0.004			
6. 0.007 (nL) ^{0.8}	hr	0.443	+	=	0.443
6. $Tc = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$					
Shallow Concentrated Flow	oot ID			\neg	
•	nent ID	unnavad			
7. Surface description (paved or unpaved)		unpaved		7	
8. Flow length, L		760		-	
9. Watercourse slope, s		0.003		+	
10. Average velocity, V (figure 3-1) 11. L	br	0.89		+	0.220
11.	hr	0.238	†	=	0.238
<u>Channel Flow</u>	nent ID				
12. Cross sectional flow area, a	ft ²			1	
13. Wetted perimeter, pw	ft				
14. Hydraulic radius, r= a/pw compute r	ft			7	
15. Channel Slope, s	ft/ft			1	
16. Manning's roughness coeff., n					
17. V= 1.49 r ^{2/3} s ^{1/2} / n	ft/s	3		1	
18. Flow length, L	ft				
19. L	hr		+	 	
$T_{t} = {3600 \text{ V}}$!			<u> </u>	
20. Watershed or subarea T_c or T_t (add T_t in st	teps 6	11. and 19)		hr	0.681
	- F 1	,			
				min	41

Project NOKIA SITE Location DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/4/2020
Check one: ✓ Present ☐ Developed Check one: ✓ Tc ☐ Tt		SUBAREA 003	1		
NOTES: Space for as many as two segments per flow typ. Include a map. schematic, or description of flow			ch worksheet.		
Sheet Flow (Applicable to Tc only) Segm	ent ID			\neg	
1. Surface Description (Table 3-1)		Grass			
2. Manning's roughness coeff., n (Table 3-1)		0.24			
3. Flow length, L (total L ≤ 300 ft)	ft	100			
4. Two-yr 24-hr rainfall, P ₂	in	3.34			
5. Land slope, s	ft/ft	0.004			
6. 0.007 (nL) ^{0.8}	hr	0.443	+	=	0.443
6. $Tc = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$					
Shallow Concentrated Flow Segm	ent ID			7	
7. Surface description (paved or unpaved)	ent ib	unpaved			
8. Flow length, L		580			
9. Watercourse slope, s		0.003			
10. Average velocity, V (figure 3-1)		0.89			
	hr	0.181	+	_	0.181
11. $T_{t} = \frac{L}{3600 \text{ V}}$,	55.	•		
<u>Channel Flow</u> Segm	ent ID			\neg	
12. Cross sectional flow area, a	ft ²				
13. Wetted perimeter, pw	ft				
14. Hydraulic radius, r= a/pw compute r	ft				
15. Channel Slope, s	ft/ft				
16. Manning's roughness coeff., n					
17. $V= 1.49 r^{2/3} s^{1/2} / n$	ft/s	3			
18. Flow length, L	ft	_			
19. L	hr		+	=	
T _t =					
20. Watershed or subarea T_c or T_t (add T_t in ste	eps 6,	11, and 19)		hr	0.625
				min	37

Project Location	NOKIA SITE DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/4/2020
Check one:	✓ Present ☐ Developed ✓ Tc ☐ Tt		SUBAREA 004			
	ace for as many as two segments per flow ude a map. schematic, or description of flo			ch worksheet.		
Sheet Flow	(Applicable to Tc only) Seg	gment ID			7	
1	. Surface Description (Table 3-1)		Grass			
2	. Manning's roughness coeff., n (Table 3-1	1)	0.24			
3	. Flow length, L (total L ≤ 300 ft)	ft	100		7	
4	. Two-yr 24-hr rainfall, P ₂	in	3.34		7	
5	. Land slope, s	ft/ft	0.01			
6	. 0.007 (nL) ^{0.8}	hr	0.307	+	_ =	0.307
	Tc = $\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$					
Challau Can				T	7	
Shallow Con	centrated Flow Sec	gment ID				
7	. Surface description (paved or unpaved)		unpaved		٦	
8	. Flow length, L		560			
9	. Watercourse slope, s		0.003		-	
10	. Average velocity, V (figure 3-1)		0.89		┧ .	
11	. L	hr	0.175	+	=	0.175
	$T_{t} = \frac{L}{3600 \text{ V}}$					
Channel Flo	<u>w</u> Sec	gment ID			7	
12	. Cross sectional flow area, a	ft ²			1	
	. Wetted perimeter, pw	ft				
14	. Hydraulic radius, r= a/pw compute r	ft				
	. Channel Slope, s	ft/ft				
	. Manning's roughness coeff., n					
	. V= 1.49 r ^{2/3} s ^{1/2} / n	ft/s	3		7	
18	. Flow length, L	ft			7	
19	. L	hr		+	=	
	T _t =					
20	. Watershed or subarea T_c or T_t (add T_t in	steps 6,	11, and 19)		hr	0.482
		. ,	,			
					min	29

Project NOKIA SITE Location DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/4/2020
Check one:		SUBAREA 010)		
NOTES: Space for as many as two segments per flow typ Include a map. schematic, or description of flow s			ch worksheet.		
Sheet Flow (Applicable to Tc only) Segme	ent ID				
1. Surface Description (Table 3-1)		Grass			
2. Manning's roughness coeff., n (Table 3-1)		0.024			
3. Flow length, L (total L ≤ 300 ft)	ft	100			
4. Two-yr 24-hr rainfall, P ₂	in	3.34			
5. Land slope, s	ft/ft	0.02		<u> </u>	
6 0.007 (nL) ^{0.8}	hr	0.037	+	=	0.037
6. $Tc = \frac{0.007 \text{ (nL)}^{0.8}}{P_2^{0.5} \text{ s}^{0.4}}$ Shallow Concentrated Flow	ſ				
Segme Segme	ent ID				
7. Surface description (paved or unpaved)		unpaved		\neg	
8. Flow length, L		1500		_	
9. Watercourse slope, s		0.005		\dashv	
10. Average velocity, V (figure 3-1)		1.15		┥ ,	
11. $T_t = \frac{L}{3600 \text{ V}}$	hr	0.363	+	= [0.363
<u>Channel Flow</u> Segme	ent ID				
12. Cross sectional flow area, a	ft ²				
13. Wetted perimeter, pw	ft				
14. Hydraulic radius, r= a/pw compute r	ft				
15. Channel Slope, s	ft/ft				
16. Manning's roughness coeff., n					
17. $V= 1.49 r^{2/3} s^{1/2} / n$	ft/s	3			
18. Flow length, L	ft	765			
19. L	hr	0.0708	+	=	0.071
T _t =					
20. Watershed or subarea T_c or T_t (add T_t in ste	ps 6,	11, and 19)		hr	0.471
				min	28

Project NOKIA SITE Location DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/4/2020
Check one: ✓ Present □ Developed Check one: □ Tc □ Tt		SUBAREA 011			
NOTES: Space for as many as two segments per flow ty Include a map. schematic, or description of flow			ch worksheet.		
Sheet Flow (Applicable to Tc only) Segm	nent ID			7	
1. Surface Description (Table 3-1)		Grass			
2. Manning's roughness coeff., n (Table 3-1)		0.24			
3. Flow length, L (total L ≤ 300 ft)	ft	100			
4. Two-yr 24-hr rainfall, P ₂	in	3.34			
5. Land slope, s	ft/ft	0.025			
6 0.007 (nL) ^{0.8}	hr	0.213	+	=	0.213
6. $Tc = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$					
Shallow Concentrated Flow Segm	nent ID				
7. Surface description (paved or unpaved)		unpaved			
8. Flow length, L		260			
9. Watercourse slope, s		0.018			
10. Average velocity, V (figure 3-1)		2.18			
11. $T_{i} = \frac{L}{3600 \text{ V}}$	hr	0.033	+	=	0.033
3600 V					
<u>Channel Flow</u> Segm	nent ID				
12. Cross sectional flow area, a	ft ²				
13. Wetted perimeter, pw	ft				
14. Hydraulic radius, r= a/pw compute r	ft				
15. Channel Slope, s	ft/ft				
16. Manning's roughness coeff., n					
17. V= 1.49 $r^{2/3} s^{1/2} / n$	ft/s	3			
18. Flow length, L	ft				
19 L	hr		+	=	
$T_{t} = {3600 \text{ V}}$					
20. Watershed or subarea T_c or T_t (add T_t in st	eps 6,	11, and 19)		hr	0.246
				min	15

Job #: 402138 Date: September 4, 2020

Project: Nokia Site Revised:
By: JMH

STO	RMWATER	MANAGEM	ENT FACILIT	Y 010
EXIS	STING DAN	ADA WOOD	S TOWNHO	MES
			INCREM.	CUMULATIVE
ELEV.	AREA (S.F.)	AREA (AC.)	VOLUME (AC.	VOLUME
			Ft.)	(Ac-Ft)
726.87	43020	0.988	0.000	0.000
727.0	43870	1.007	0.130	0.130
728.0	48150	1.105	1.056	1.186
729.0	52590	1.207	1.156	2.342
730.0	57050	1.310	1.258	3.601
731.0	63560	1.459	1.384	4.985
732.0	68900	1.582	1.520	6.506
733.0	82230	1.888	1.735	8.240
734.0	114950	2.639	2.263	10.504
735.0	172860	3.968	3.304	13.807
736.00	226320	5.196	4.582	18.389
736.39	278900	6.403	2.262	20.651
737.0	342150	7.855	4.348	24.999

DANADA WOODS TOWNHOMES

NAPERVILLE, ILLINOIS

FINAL STORM WATER MANAGEMENT PLAN DESIGN NARRATIVE

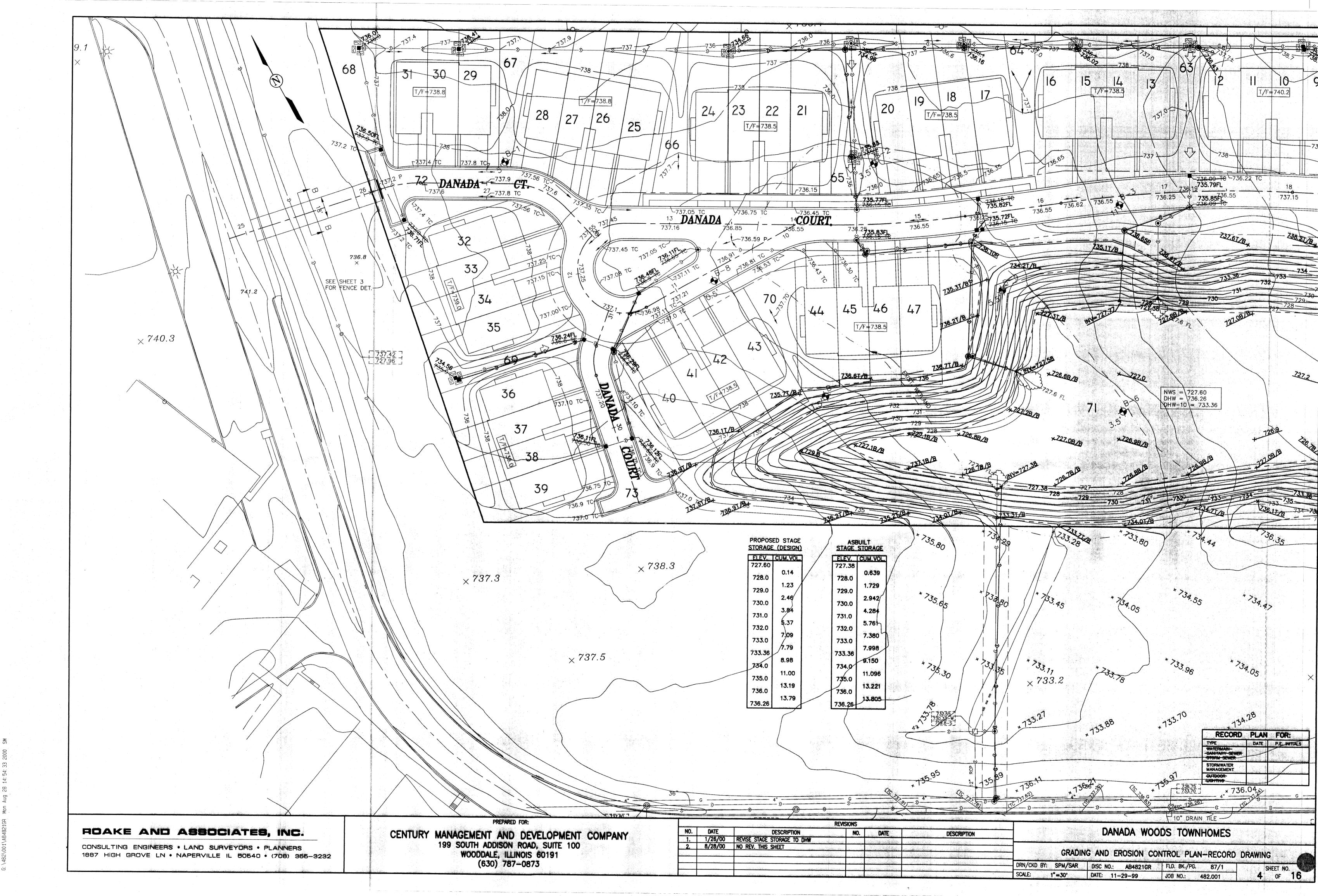
FEBRUARY 24, 1997

Prepared For:

Century Homes 199 South Addison Rd., Suite 100 Addison, Illinois 60191-1978 Tel. (630)787-0873

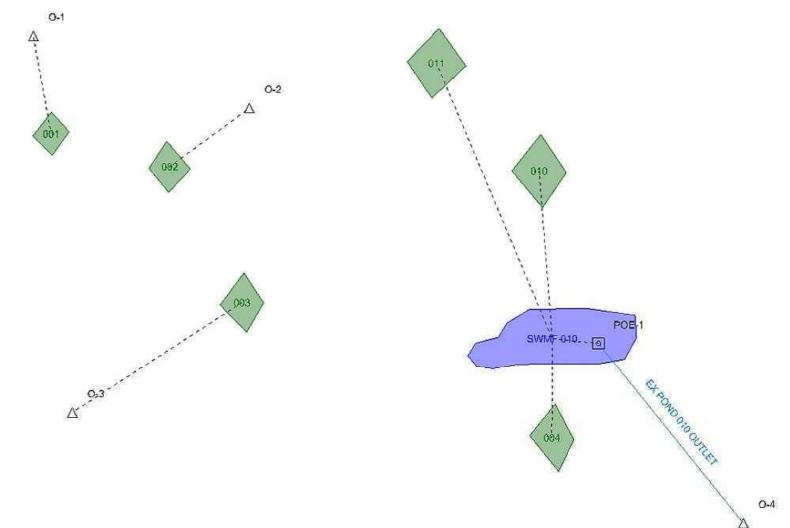
Prepared By:

Roake and Associates, Inc. 1887 High Grove Lane Naperville, Illinois 60540 Tel. (630) 355-3232 Danada Woods Townhomes Final Stormwater Management Plan Design Narrative February 24, 1997 Page 5


Based on the 57.9 acre catchment, the peak release rate is 0.13 cfs/acre, which exceeds the ordinance mandated 0.10 cfs/ acre peak discharge. Of the 10.10 acre-feet of depressional storage below el. 736.26, approximately 4.53 acre-feet is proposed to be filled within the limits of this project, although this volume will be replaced at a ratio of 1.5:1.

Proposed Conditions

The depressional area within the subject site was reconfigured to permit the additional storage for the site development to be included without an increase in flood elevation above the existing flood elevation of 736.26. Due to the depth of the 36" storm sewer, it was possible to increase the depth of the basin to increase storage capacity. The bottom elevation has been established at el. 727.6, which is slightly (0.9') above the invert of the 36" pipe. Discharge from the depression will be regulated by a plate orifice located in the downstream manhole prior to discharge into the 36" pipe. The required storage volume, as dictated by Mr. Steffen's memo of February 14, 1997, shall be the sum of the existing storage volume of 10.10 acre-feet; the compensatory storage volume required as a result of filling of fifty percent of the fill volume of 4.53 acre-feet, or 2.27 acre-feet; and the development storage volume as determined by Mr. Steffen using an 85 percent hydraulically connected impervious factor (as recommended in the documentation for Commercial/Industrial development and not 50 percent as recommended for multi-family development) of 0.51 acre-feet per acre multiplied by the gross project area of 9.66 acres, or 4.93 acre-feet; for a total storage requirement of 17.30 acre-feet. The site was designed to accommodate a total of at least 17.30 acrefeet at a design elevation of 736.26, the estimated existing design flood stage. To achieve the desired storage volume of 17.30 acre-feet at an elevation of 736.26, a plate-type orifice with a diameter of 5.25" was utilized in the downstream manhole. It was assumed that the maximum storage volume or minimum release rate from the site occurs when the receiving 36" storm sewer is operating at maximum capacity, or a depth of flow of 0.94 times the diameter of the storm sewer. The orifice was then checked for the minimum flow condition in the 36" storm sewer. This condition was assumed to be the peak discharge from the site with no other contributing flows in the storm sewer, which created a depth of flow in the 36" pipe of 0.57 feet for 2.5 cfs. The peak discharge (36" empty) was determined to be 2.9 cfs, or 0.05 cfs per acre for the entire tributary watershed. (The County Ordinance requirement is 0.10 cfs per acre from the development site only). Due to the excessive restriction imposed at the outlet to develop the storage required by Mr. Steffen, the drain-down time is estimated to be about four days for the design event.


PROVIDED STORAGE WITHIN DANADA WOODS BASIN 13.80 FCFT (SEE PTTACHED AS-BUILT)

17.30 - 13.60 = 3.5 AFT REQUILED ONSITE NAME COMMONS

EXHIBIT 2C

"EXIST" EXISTING CONDITIONS PONDPACK MODEL

Scenario Summary						
ID	1					
Label	100Yr 24Hr					
Notes						
Active Topology	Base Active Topology					
Hydrology	Base Hydrology					
Rainfall Runoff	100Yr 24Hr					
Physical	Base Physical					
Initial Condition	Base Initial Condition					
Boundary Condition	Base Boundary Condition					
Infiltration and Inflow	Base Infiltration and Inflow					
Output	Base Output					
User Data Extensions	Base User Data Extensions					
PondPack Engine Calculation Options	72Hr					
Output Summary						
Output Increment	0.050 hours Duration	72.000 hours				
Rainfall Summary						

Executive Summary (Nodes)

Rainfall Type

Storm Event

100

8.6 in

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
001	100Yr 24Hr	100	None	1.314	16.150	1.91	(N/A)	(N/A)
002	100Yr 24Hr	100	None	6.022	16.150	8.62	(N/A)	(N/A)
003	100Yr 24Hr	100	None	21.011	16.050	27.59	(N/A)	(N/A)
004	100Yr 24Hr	100	None	2.981	16.100	4.41	(N/A)	(N/A)
010	100Yr 24Hr	100	None	15.540	16.000	20.07	(N/A)	(N/A)
011	100Yr 24Hr	100	None	5.751	16.000	7.72	(N/A)	(N/A)
O-1	100Yr 24Hr	100	None	1.314	16.150	1.91	(N/A)	(N/A)
O-2	100Yr 24Hr	100	None	6.022	16.150	8.62	(N/A)	(N/A)
O-3	100Yr 24Hr	100	None	21.011	16.050	27.59	(N/A)	(N/A)
0-4	100Yr 24Hr	100	None	9.944	24.150	4.45	(N/A)	(N/A)
SWMF 010 (IN)	100Yr 24Hr	100	None	24.272	16.000	32.19	(N/A)	(N/A)
SWMF 010 (OUT)	100Yr 24Hr	100	None	9.944	24.150	4.45	736.56	21.891

Executive Summary (Links)

Label	Type	Location	Hydrograph	Peak Time	Peak Flow	End Point	Node Flow
			Volume	(hours)	(ft^3/s)		Direction
			(ac-ft)				

Time-Depth

100YR-24HR

Curve

Return Event Tag

Total Depth

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
EX POND 010 OUTLET	Pond Outlet	Upstream	24.272	16.000	32.19	SWMF 010	Pond Inflow
EX POND 010 OUTLET	Pond Outlet	Outflow	9.944	24.150	4.45	SWMF 010	Pond Outflow
EX POND 010 OUTLET	Pond Outlet	Link	9.944	24.150	4.45		
EX POND 010 OUTLET	Pond Outlet	Downstream	9.944	24.150	4.45	0-4	

Scenario Summary							
ID	47						
Label	100Yr 1Hr						
Notes							
Active Topology	<i>> Base Active Topology</i>						
Hydrology	<i>> Base Hydrology</i>						
Rainfall Runoff	100Yr 1Hr						
Physical	<i>> Base Physical</i>						
Initial Condition	<i>> Base Initial Condition</i>						
Boundary Condition	<i>> Base Boundary Condition</i>						
Infiltration and Inflow	<i>> Base Infiltration and Inflow</i>						
Output	<i>> Base Outp</i>	ut					
User Data Extensions	<i>> Base User</i>	Data Extensions					
PondPack Engine Calculation Options	24Hr						
Output Summary							
Output Increment	0.050 hours	Duration	24.000 hours				
Rainfall Summary							
Return Event Tag	100	Rainfall Type	Time-Depth Curve				
Total Depth	4.0 in	Storm Event	100YR- 1HR				

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
001	100Yr 1Hr	100	None	0.354	0.800	4.87	(N/A)	(N/A)
002	100Yr 1Hr	100	None	1.678	0.800	21.94	(N/A)	(N/A)
003	100Yr 1Hr	100	None	7.287	0.700	101.26	(N/A)	(N/A)
004	100Yr 1Hr	100	None	0.764	0.650	11.50	(N/A)	(N/A)
010	100Yr 1Hr	100	None	5.587	0.550	90.13	(N/A)	(N/A)
011	100Yr 1Hr	100	None	1.929	0.400	41.03	(N/A)	(N/A)
0-1	100Yr 1Hr	100	None	0.354	0.800	4.87	(N/A)	(N/A)
O-2	100Yr 1Hr	100	None	1.678	0.800	21.94	(N/A)	(N/A)
O-3	100Yr 1Hr	100	None	7.287	0.700	101.26	(N/A)	(N/A)
0-4	100Yr 1Hr	100	None	2.375	1.850	1.37	(N/A)	(N/A)
SWMF 010 (IN)	100Yr 1Hr	100	None	8.280	0.550	132.03	(N/A)	(N/A)
SWMF 010 (OUT)	100Yr 1Hr	100	None	2.375	1.850	1.37	732.94	8.137

Label	Type	Location	Hydrograph	Peak Time	Peak Flow	End Point	Node Flow
			Volume	(hours)	(ft^3/s)		Direction
			(ac-ft)				

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
EX POND 010 OUTLET	Pond Outlet	Upstream	8.280	0.550	132.03	SWMF 010	Pond Inflow
EX POND 010 OUTLET	Pond Outlet	Outflow	2.375	1.850	1.37	SWMF 010	Pond Outflow
EX POND 010 OUTLET	Pond Outlet	Link	2.375	1.850	1.37		
EX POND 010 OUTLET	Pond Outlet	Downstream	2.375	1.850	1.37	0-4	

Scenario Summary	Scenario Summary							
ID	45							
Label	2Yr 24Hr							
Notes								
Active Topology	Base Active Topology							
Hydrology	Base Hydrology							
Rainfall Runoff	2Yr 24Hr							
Physical	Base Physical							
Initial Condition	Base Initial Condition							
Boundary Condition	Base Boundary Condition							
Infiltration and Inflow	Base Infiltration and Inflow							
Output	Base Output							
User Data Extensions	Base User Data	Extensions						
PondPack Engine Calculation Options	72Hr							
Output Summary								
Output Increment	0.050 hours	Duration	72.000 hours					
Rainfall Summary								
Return Event Tag	2	Rainfall Type	Time-Depth Curve					
Total Depth	3.3 in	Storm Event	2YR-24HR					

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
001	2Yr 24Hr	2	None	0.237	17.100	0.42	(N/A)	(N/A)
002	2Yr 24Hr	2	None	1.142	17.100	1.98	(N/A)	(N/A)
003	2Yr 24Hr	2	None	5.392	16.200	8.14	(N/A)	(N/A)
004	2Yr 24Hr	2	None	0.503	17.100	0.92	(N/A)	(N/A)
010	2Yr 24Hr	2	None	4.190	16.100	6.21	(N/A)	(N/A)
011	2Yr 24Hr	2	None	1.410	16.050	2.20	(N/A)	(N/A)
0-1	2Yr 24Hr	2	None	0.237	17.100	0.42	(N/A)	(N/A)
O-2	2Yr 24Hr	2	None	1.142	17.100	1.98	(N/A)	(N/A)
O-3	2Yr 24Hr	2	None	5.392	16.200	8.14	(N/A)	(N/A)
0-4	2Yr 24Hr	2	None	3.141	24.250	1.01	(N/A)	(N/A)
SWMF 010 (IN)	2Yr 24Hr	2	None	6.103	16.100	9.27	(N/A)	(N/A)
SWMF 010 (OUT)	2Yr 24Hr	2	None	3.141	24.250	1.01	731.34	5.499

Label	Type	Location	Hydrograph	Peak Time	Peak Flow	End Point	Node Flow
			Volume	(hours)	(ft^3/s)		Direction
			(ac-ft)				

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
EX POND 010 OUTLET	Pond Outlet	Upstream	6.103	16.100	9.27	SWMF 010	Pond Inflow
EX POND 010 OUTLET	Pond Outlet	Outflow	3.141	24.250	1.01	SWMF 010	Pond Outflow
EX POND 010 OUTLET	Pond Outlet	Link	3.141	24.250	1.01		
EX POND 010 OUTLET	Pond Outlet	Downstream	3.141	24.250	1.01	0-4	

Scenario Summary							
ID	67						
Label	2Yr 2Hr						
Notes							
Active Topology	<i>> Base Active Topology</i>						
Hydrology	<i> Base Hydro</i>	se Hydrology					
Rainfall Runoff	2Yr 2Hr						
Physical	<i>> Base Physical</i>						
Initial Condition	<i>> Base Initial Condition</i>						
Boundary Condition	<i>> Base Boundary Condition</i>						
Infiltration and Inflow	<i>> Base Infiltration and Inflow</i>						
Output	<i>> Base Output</i>						
User Data Extensions	<i>> Base User Data Extensions</i>						
PondPack Engine Calculation Options	24Hr						
Output Summary							
Output Increment	0.050 hours	Duration	24.000 hours				
Rainfall Summary							
Return Event Tag	2	Rainfall Type	Time-Depth Curve				
Total Depth	1.9 in Storm Event 2YR- 2						

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
001	2Yr 2Hr	2	None	0.056	1.450	0.48	(N/A)	(N/A)
002	2Yr 2Hr	2	None	0.287	1.450	2.39	(N/A)	(N/A)
003	2Yr 2Hr	2	None	1.979	1.000	17.61	(N/A)	(N/A)
004	2Yr 2Hr	2	None	0.105	1.400	0.97	(N/A)	(N/A)
010	2Yr 2Hr	2	None	1.625	0.850	16.43	(N/A)	(N/A)
011	2Yr 2Hr	2	None	0.491	0.700	5.74	(N/A)	(N/A)
O-1	2Yr 2Hr	2	None	0.056	1.450	0.48	(N/A)	(N/A)
O-2	2Yr 2Hr	2	None	0.287	1.450	2.39	(N/A)	(N/A)
O-3	2Yr 2Hr	2	None	1.979	1.000	17.61	(N/A)	(N/A)
0-4	2Yr 2Hr	2	None	0.000	0.000	0.00	(N/A)	(N/A)
SWMF 010 (IN)	2Yr 2Hr	2	None	2.221	0.800	21.98	(N/A)	(N/A)
SWMF 010 (OUT)	2Yr 2Hr	2	None	0.000	0.000	0.00	728.90	2.221

Label	Type	Location	Hydrograph	Peak Time	Peak Flow	End Point	Node Flow
			Volume	(hours)	(ft^3/s)		Direction
			(ac-ft)				

Scenario Calculation Summary

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
EX POND 010 OUTLET	Pond Outlet	Upstream	2.221	0.800	21.98	SWMF 010	Pond Inflow
EX POND 010 OUTLET	Pond Outlet	Outflow	0.000	0.000	0.00	SWMF 010	Pond Outflow
EX POND 010 OUTLET	Pond Outlet	Link	0.000	0.000	0.00		
EX POND 010 OUTLET	Pond Outlet	Downstream	0.000	0.000	0.00	0-4	

Table of Contents

UPDATED 100YR 12HR-48HR	Time-Depth Curve, 100 years	1
001		
	Unit Hydrograph Summary, 100 years	2
002		
	Unit Hydrograph Summary, 100 years	4
003		
	Unit Hydrograph Summary, 100 years	6
004		
	Unit Hydrograph Summary, 100 years	8
010		
	Unit Hydrograph Summary, 100 years	10
011		
	Unit Hydrograph Summary, 100 years	12
SWMF 010	Elevation vs. Volume Curve, 100 years	14
Ex Pond 010 Outlet	Outlet Input Data, 100 years	15

Subsection: Time-Depth Curve Return Event: 100 years Label: UPDATED 100YR 12HR-48HR Storm Event: 100YR-24HR

Time-Depth Curve: 100YR-24HR			
Label	100YR-24HR		
Start Time	0.000 hours		
Increment	1.000 hours		
End Time	24.000 hours		
Return Event	100 years		

CUMULATIVE RAINFALL (in) Output Time Increment = 1.000 hours Time on left represents time for first value in each row.

	-				
Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.2	0.4	0.6	0.8
5.000	1.0	1.2	1.4	1.7	2.0
10.000	2.3	2.7	3.1	3.8	4.5
15.000	5.2	6.0	6.7	7.3	7.7
20.000	8.0	8.2	8.3	8.4	8.6

Subsection: Unit Hydrograph Summary Return Event: 100 years Label: 001 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	72.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.605 hours
Area (User Defined)	3.220 acres
Computational Time Increment	0.081 hours
Time to Peak (Computed)	16.133 hours
Flow (Peak, Computed)	1.91 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.150 hours
Flow (Peak Interpolated Output)	1.91 ft³/s
Drainage Area	
SCS CN (Composite)	69.500
Area (User Defined)	3.220 acres
Maximum Retention (Pervious)	4.4 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	4.9 in
Runoff Volume (Pervious)	1.314 ac-ft
Hydrograph Volume (Area und	ler Hydrograph curve)
Volume	1.314 ac-ft
SCS Unit Hydrograph Parame	ters
Time of Concentration (Composite)	0.605 hours
Computational Time Increment	0.081 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	6.03 ft ³ /s
Unit peak time, Tp	0.403 hours

Label: 001 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters		
Unit receding limb, Tr	1.613 hours	
Total unit time, Tb	2.017 hours	

Label: 002 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	72.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.681 hours
Area (User Defined)	14.230 acres
Computational Time Increment	0.091 hours
Time to Peak (Computed)	16.162 hours
Flow (Peak, Computed)	8.62 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.150 hours
Flow (Peak Interpolated Output)	8.62 ft³/s
Drainage Area	
SCS CN (Composite)	71.000
Area (User Defined)	14.230 acres
Maximum Retention (Pervious)	4.1 in
Maximum Retention (Pervious, 20 percent)	0.8 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	5.1 in
Runoff Volume (Pervious)	6.022 ac-ft
Liveline are the Malarian American de	
Hydrograph Volume (Area unde	er Hydrograph curve)
Volume	6.022 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.681 hours
Computational Time Increment	0.091 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	23.68 ft ³ /s
Unit peak time, Tp	0.454 hours
Rontlay Systams Inc	Haestad Methods Solution

Label: 002 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters		
Unit receding limb, Tr	1.816 hours	
Total unit time, Tb	2.270 hours	

Subsection: Unit Hydrograph Summary Return Event: 100 years Label: 003 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	72.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.625 hours
Area (User Defined)	39.530 acres
Computational Time Increment	0.083 hours
Time to Peak (Computed)	16.083 hours
Flow (Peak, Computed)	27.60 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.050 hours
Flow (Peak Interpolated Output)	27.59 ft³/s
Drainage Area	
SCS CN (Composite)	81.800
Area (User Defined)	39.530 acres
Maximum Retention (Pervious)	2.2 in
Maximum Retention (Pervious, 20 percent)	0.4 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	6.4 in
Runoff Volume (Pervious)	21.011 ac-ft
Hydrograph Volume (Area und	der Hydrograph curve)
Volume	21.011 ac-ft
SCS Unit Hydrograph Parame	eters
Time of Concentration (Composite)	0.625 hours
Computational Time Increment	0.083 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	71.66 ft ³ /s
Unit peak time, Tp	0.417 hours
Death Oaks	La collecte d Matter de Oal Car

Label: 003 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters		
Unit receding limb, Tr	1.667 hours	
Total unit time, Tb	2.083 hours	

Label: 004 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	72.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.482 hours
Area (User Defined)	7.680 acres
Computational Time Increment	0.064 hours
Time to Peak (Computed)	16.131 hours
Flow (Peak, Computed)	4.41 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.100 hours
Flow (Peak Interpolated Output)	4.41 ft ³ /s
Drainage Area	
SCS CN (Composite)	67.500
Area (User Defined)	7.680 acres
Maximum Retention (Pervious)	4.8 in
Maximum Retention (Pervious, 20 percent)	1.0 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	4.7 in
Runoff Volume (Pervious)	2.981 ac-ft
Hydrograph Volume (Area under	Hydrograph curve)
Volume	2.981 ac-ft
SCS Unit Hydrograph Parameter	rs
Time of Concentration (Composite)	0.482 hours
Computational Time Increment	0.064 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	18.05 ft ³ /s
Unit peak time, Tp	0.321 hours

Label: 004 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters		
Unit receding limb, Tr	1.285 hours	
Total unit time, Tb	1.607 hours	

Label: 010 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	72.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.471 hours
Area (User Defined)	28.170 acres
Computational Time Increment	0.063 hours
Time to Peak (Computed)	16.014 hours
Flow (Peak, Computed)	20.08 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	20.07 ft³/s
Drainage Area	
SCS CN (Composite)	83.800
Area (User Defined)	28.170 acres
Maximum Retention (Pervious)	1.9 in
Maximum Retention (Pervious, 20 percent)	0.4 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	6.6 in
Runoff Volume (Pervious)	15.540 ac-ft
Llader week Melana (Arabana da	- I I - das sus als \
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	15.540 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.471 hours
Computational Time Increment	0.063 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	67.77 ft ³ /s
Unit peak time, Tp	0.314 hours
Pontloy Systems, Inc.	Hanstad Mothods Solution

Label: 010 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	1.256 hours
Total unit time, Tb	1.570 hours

Label: 011 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	72.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.250 hours
Area (User Defined)	11.200 acres
Computational Time Increment	0.033 hours
Time to Peak (Computed)	16.000 hours
Flow (Peak, Computed)	7.72 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	7.72 ft³/s
Drainage Area	
SCS CN (Composite)	80.000
Area (User Defined)	11.200 acres
Maximum Retention (Pervious)	2.5 in
Maximum Retention (Pervious, 20 percent)	0.5 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	6.2 in
Runoff Volume (Pervious)	5.751 ac-ft
Hydrograph Volume (Area und	ler Hydrograph curve)
Volume	5.751 ac-ft
SCS Unit Hydrograph Parame	ters
Time of Concentration (Composite)	0.250 hours
Computational Time Increment	0.033 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	50.76 ft ³ /s
Unit peak time, Tp	0.167 hours

Label: 011 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters				
Unit receding limb, Tr	0.667 hours			
Total unit time, Tb	0.833 hours			

Subsection: Elevation vs. Volume Curve Return Event: 100 years

Label: SWMF 010 Storm Event: 100YR-24HR

Elevation-Volume

Pond Elevation (ft)	Pond Volume (ac-ft)
726.87	0.000
727.00	0.130
728.00	1.186
729.00	2.342
730.00	3.601
731.00	4.985
732.00	6.506
733.00	8.240
734.00	10.504
735.00	13.807
736.00	18.389
736.39	20.651
737.00	24.999

Subsection: Outlet Input Data

Return Event: 100 years

Label: Ex Pond 010 Outlet

Storm Event: 100YR-24HR

Requested Pond Water Surface Elevations					
Minimum (Headwater) 726.87 ft					
Increment (Headwater)	0.10 ft				
Maximum (Headwater)	737.00 ft				

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward	TW	726.88	737.00
Irregular Weir	Weir - 1	Forward	TW	736.39	737.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years Label: Ex Pond 010 Outlet Storm Event: 100YR-24HR

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	726.67 ft
Orifice Diameter	5.25 in
Orifice Coefficient	0.600

Structure ID: Weir - 1 Structure Type: Irregular Weir

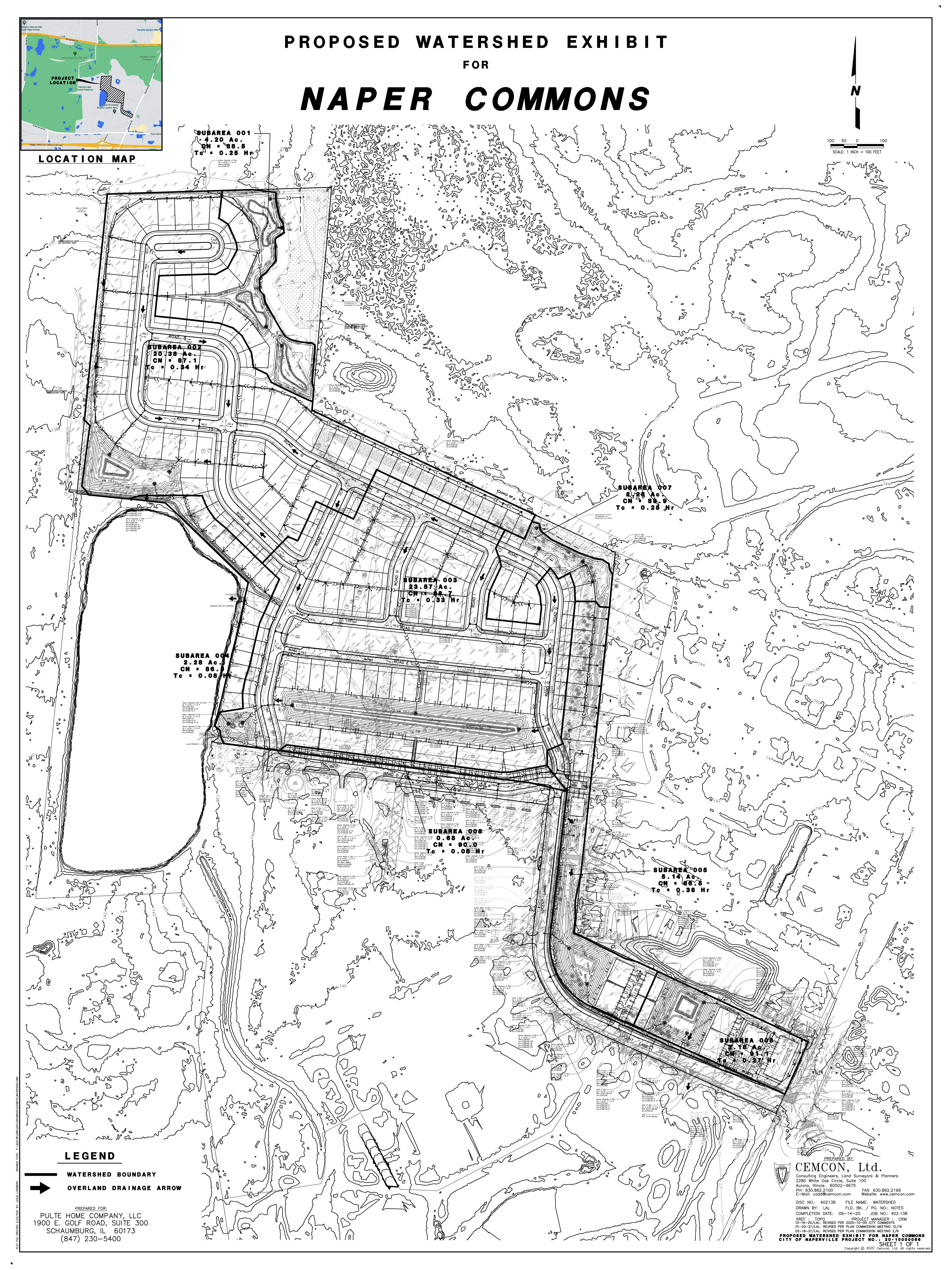
Station (ft)	Elevation (ft)
0.00	737.00
48.90	736.70
92.90	736.39
98.90	736.55
145.30	736.88
168.70	737.00

Lowest Elevation 736.39 ft
Weir Coefficient 3.00 (ft^0.5)/s

Index

```
0
001 (Unit Hydrograph Summary, 100 years)...2, 3
002 (Unit Hydrograph Summary, 100 years)...4, 5
003 (Unit Hydrograph Summary, 100 years)...6, 7
004 (Unit Hydrograph Summary, 100 years)...8, 9
010 (Unit Hydrograph Summary, 100 years)...10, 11
011 (Unit Hydrograph Summary, 100 years)...12, 13
Ε
Ex Pond 010 Outlet (Outlet Input Data, 100 years)...15, 16
```

S


SWMF 010 (Elevation vs. Volume Curve, 100 years)...14

U

UPDATED 100YR 12HR-48HR (Time-Depth Curve, 100 years)...1

EXHIBIT 2D

PROPOSED CONDITIONS WATERSHED EXHIBIT

EXHIBIT 2E

PROPOSED CONDITIONS SUPPORTING DOCUMENTATION

Project	Nokia Site	Ву		ИΗ	Date	
Location	DuPage County, IL	Checked	A	RF	Date	2/22/2021
Circle one: P	resent Developed		SUBAREA	. 001		
1. Runoff curve nu	umber (CN)					
			CN 1/		Area	1
Soil Name	Cover Description	2-2		4	_X_ acres	
and Hydroogic Group	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2	Fig. 2-3	Fig. 2-4	mi2 %	Product of CN x Area
С	Single Family, 1/5 Ac. Lots (assumed 50% impervious)	86			1.85	158.9104683
С	Open Space	74			0.74	54.88842975
С	SWMF	98			0.68	66.87892562
С	Impervious Area (NWL)	98			0.93	91.12245179
1/ Use only one C	I N source per line.		Totals =		4.20	371.800
	Total Product		371.800			
CN (weighted) =	Total Area	=	4.202	=	88.486	-
				Use CN =	88.5]
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		yr			
	Rainfall		in			

Runoff, Q

Project ₋ocation	Nokia Site DuPage County, IL	By Checked		MH RF	Date Date	
		_			Date	2/22/2021
Circle one: P	resent Developed		SUBAREA	002		
I. Runoff curve nu	umber (CN)					
			CN 1/		Area]
Soil Name	Cover Description	2		_	_X_ acres	
and Hydroogic Group	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	mi2 %	Product of CN x Area
С	Single Family, 1/5 Ac. Lots (assumed 50% impervious)	86			9.52	818.4412305
С	Open Space	74			1.95	144.1386134
С	SWMF	98			0.76	74.46740129
С	Impervious Area (NWL, paving)	98			0.46	44.65794307
С	Single Family, 1/8 Ac. Lots (assumed 65% impervious)	90			7.70	692.7479339
/ Use only one Cl	N source per line.		Totals =		20.38	1774.453
ON (Total Product		1774.453		07.000	
CN (weighted) =	= Total Area	=	20.377	=	87.080	-
				Use CN =	87.1]
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		yr	201111111	J.O.IIII II Z	5.01111 110
	Rainfall		in		<u> </u>	

Runoff, Q

Project	Nokia Site	Ву		МН	Date	
Location	DuPage County, IL	Checked	A	RF	Date	2/22/2021
Circle one: P	resent Developed		SUBAREA	003		
1. Runoff curve nu	umber (CN)					
			CN 1/		Area	1
Soil Name	Cover Description	2-2		4	_X_ acres	
and Hydroogic Group	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2	Fig. 2-3	Fig. 2-4	mi2 %	Product of CN x Area
С	Townhomes (assumed 65% impervious)	90			1.41	126.4859504
С	Open Space	74			3.44	254.6846924
С	SWMF	98			1.89	185.2280992
С	Impervious Area (NWL, paving)	98			1.03	100.4702479
С	Single Family, 1/8 Ac. Lots (assumed 65% impervious)	90			15.81	1422.995868
1/ Use only one C	N course per line		Totals =		23.57	2089.865
i/ Ose only one C	N source per line.		i otais =		25.51	2009.003
CN (weighted) =	Total Product		2089.865		88.653	
	Total Area		23.573			- 1
				Use CN =	88.7	_
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		yr :			
	Rainfall		in			

Runoff, Q

Project	Nokia Site DuPage County, IL	By Checked		МН RF	Date	9/8/2020
Location	DuPage County, IL	Checked	A	KΓ	Date	2/22/2021
Circle one: Pr	resent Déveloped		SUBAREA	004		
Runoff curve nu	mber (CN)					
			1/		1 .	Ī
Soil Name	Cover Description	N	CN 1/	<u> </u>	Area	
and Hydroogic Group	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	_X_ acres mi2 %	Product of CN x Area
С	Single Family, 1/8 Ac. Lots (assumed 65% impervious)	90			1.60	143.6363636
С	Open Space	74			0.56	41.79063361
С	Impervious Area (Bike Path)	98			0.12	12.0137741
1/ Use only one Cf	N source per line.		Totals =		2.28	197.441
	Total Product		197.441			
CN (weighted) =	Total Area	=	2.283	=	86.472	
				Use CN =	86.5	
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		yr	2.0.111 # 1	U.U.III #2	0.0
	Rainfall		in			

Runoff, Q

Project ₋ocation	Nokia Site DuPage County, IL	By Checked		MH RF	Date Date	
Location		Checked		IXI	Date	2/22/2021
Circle one: P	resent Developed		SUBAREA	005		
. Runoff curve nu	umber (CN)					
						1
Soil Name	Cover Description	0	CN <u>1/</u>		Area	
and	(cover type, treatment, and hydrologic condition; percent	9 2-7	2-3	2-4	_X_ acres mi2	
Hydroogic Group	impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2	Fig. 2	m2 %	Product of CN x Area
						OIVATION
С	Townhomes (assumed 65% impervious)	90			1.67	149.8512397
С	Open Space	74			1.67	123.2365014
С	SWMF	98			0.91	89.39012856
С	Impervious Area (NWL, paving)	98			0.18	17.54820937
0	Circle Family 4/0 As Late (assumed 050) increasing	00			0.70	04.75000040
С	Single Family, 1/8 Ac. Lots (assumed 65% impervious)	90			0.72	64.75206612
_						
/ Use only one Cl	N source per line.		Totals =		5.14	444.778
	Total Product		444.778			
CN (weighted) =		=			86.515	-
	Total Area		5.141	ı		1
				Use CN =	86.5	
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		yr			
	Rainfall		in		<u></u>	

Runoff, Q

Project ₋ocation	Nokia Site DuPage County, IL	By Checked		MH RF	Date Date	9/8/2020 2/22/2021
Location		Checked	A	ΝΓ	Date	2/22/2021
Circle one: P	resent Developed		SUBAREA	006		
Runoff curve nu	imber (CN)					
			ON 1/			
Soil Name	Cover Description	Ö	CN <u>1/</u>		Area	
and Hydroogic Group	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	_X_ acres mi2 %	Product of CN x Area
С	Townhomes (assumed 65% impervious)	90			2.01	180.91
С	Open Space	74			0.25	18.41
С	SWMF	98			0.57	56.13
С	Impervious Area (NWL, paving)	98			0.35	34.15
1/ Use only one Cl	N source per line.		Totals =		3.18	289.590
6 11 () 1 () 1	Total Product		289.590		04.000	
CN (weighted) =	= Total Area	=	3.180	=	91.066	
				Use CN =	91.1	
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		yr	3.0.111 #1	Otomin m2	0.0
	Rainfall		in			

Runoff, Q

Project	Nokia Site	By		ИН RF	Date	9/8/2020
Location	DuPage County, IL	Checked	A	ΧΓ	Date	2/22/2021
Circle one: P	resent Developed		SUBAREA	007		
1. Runoff curve nu	umber (CN)					
			CN 1/		Area	
Soil Name and Hydroogic Group	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	_X_ acres mi2 %	Product of CN x Area
С	Single Family, 1/8 Ac. Lots (assumed 65% impervious)	90			1.44	129.9628099
С	Open Space	74			0.39	28.70642792
С	SWMF	98			0.13	13.20615243
С	Impervious Area (NWL, paving)	98			0.32	31.02433425
1/ Use only one Cl	N source per line.		Totals =		2.28	202.900
	Total Product		202.900			
CN (weighted) =	= Total Area	=	2.283	=	88.863	
				Use CN =	88.9	
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		yr			
	Rainfall		in			

Runoff, Q

Project Location	Nokia Site DuPage County, IL	By Checked		MH RF	Date_ Date	9/8/2020 2/22/2021
Circle one: P	resent Developed		SUBAREA	008	- -	
1. Runoff curve nu	mber (CN)					
			CN 1/		Area	
Soil Name and Hydroogic Group	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	_X_ acres mi2 %	Product of CN x Area
С	Townhomes (assumed 65% impervious)	90			0.68	61.2
1/ Use only one Cl	N source per line.		Totals =		0.68	61.200
	Total Product		61.200			
CN (weighted) =	Total Area	=	0.680	=	90.000	
				Use CN =	90.0	
2. Runoff						
				Storm #1	Storm #2	Storm #3
	Frequency		yr in			·
	Nummum		11.1		1	

Runoff, Q

Project Location	NOKIA SITE DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/8/2020
Check one:	☐ Present ☐ Developed ☐ Tt		SUBAREA 00°	1		
Check one:						
	ace for as many as two segments per floude a map. schematic, or description of			ch workshee	t.	
Sheet Flow	(Applicable to Tc only)	Segment ID				
1	. Surface Description (Table 3-1)		Grass			
2	. Manning's roughness coeff., n (Table 3	3-1)	0.24			
3	. Flow length, L (total L ≤ 300 ft)	ft	100			
4	. Two-yr 24-hr rainfall, P ₂	in	3.34			
5	. Land slope, s	ft/ft	0.02			
6	. 0.007 (nL) ^{0.8}	hr	0.233	+	=	0.233
	Tc = $\frac{0.007 \text{ (nL)}^{0.8}}{P_2^{0.5} \text{ s}^{0.4}}$					
	P_2 S					
Shallow Cor	ncentrated Flow	Segment ID				
7	. Surface description (paved or unpaved	d)	unpaved		<u>-</u>	
8	. Flow length, L		130			
g	. Watercourse slope, s		0.02			
10	. Average velocity, V (figure 3-1)		2.30			
11	. L T _t =	hr	0.016	+	=	0.016
	$T_{t} = {3600 \text{ V}}$					
Channel Flo	NA/		<u> </u>	1		
Chamilerio	w S	Segment ID				
12	. Cross sectional flow area, a	ft ²				
13	. Wetted perimeter, pw	ft				
14	. Hydraulic radius, r= a/pw compute r	ft				
15	. Channel Slope, s	ft/ft				
	. Manning's roughness coeff., n					
17	. V= 1.49 $r^{2/3} s^{1/2} / n$	ft/s	3			
18	. Flow length, L	ft				
19		hr		+	=	
	T _t =					
20	. Watershed or subarea T_c or T_t (add T_t	in stens 6	11. and 19)		hr	0.248
20		0.000 0,	, απα 10)		[
					min	15

Project Location	NOKIA SITE DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/8/2020
Check one:	☐ Present ☐ Developed ☐ Tt		SUBAREA 002	2		
	ace for as many as two segments per flow ude a map. schematic, or description of flo			ch worksheet.		
Sheet Flow	(Applicable to Tc only) Se	gment ID			7	
1	. Surface Description (Table 3-1)		Grass			
	. Manning's roughness coeff., n (Table 3-	1)	0.24			
	. Flow length, L (total L ≤ 300 ft)	ft	100			
	. Two-yr 24-hr rainfall, P ₂	in	3.34			
5	. Land slope, s	ft/ft	0.02			
6		hr	0.233	+	=	0.233
	Tc = $\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$				<u> </u>	
	P ₂ ^{0.5} s ^{0.4}					
Shallow Con	centrated Flow Se	gment ID			7	
7	. Surface description (paved or unpaved)		unpaved		<u> </u>	
8	. Flow length, L		280			
	. Watercourse slope, s		0.02			
10	. Average velocity, V (figure 3-1)		2.30			
11		hr	0.034	+	=	0.034
					_	
Channel Flo	W			<u> </u>	7	
		gment ID ft ²				
	. Cross sectional flow area, a					
	. Wetted perimeter, pw	ft				
	. Hydraulic radius, r= a/pw compute r	ft				
	. Channel Slope, s	ft/ft				
	. Manning's roughness coeff., n . V= 1.49 r ^{2/3} s ^{1/2} / n	5 . /	0			
		ft/s	3		_	
	. Flow length, L	ft	800		_	2.274
19	т	hr	0.0741	+	=	0.074
	$I_{t} = {3600 \text{ V}}$					
20	. Watershed or subarea T_c or T_t (add T_t in	steps 6.	11, and 19)		hr	0.341
		1 - 27	, -,			
					min	20

Project Location	NOKIA SITE DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/8/2020
Check one:	☐ Present ☑ Developed ☑ Tc ☐ Tt		SUBAREA 00	13		
	ace for as many as two segments per flow ude a map. schematic, or description of flo			ach workshee	t.	
Sheet Flow	(Applicable to Tc only) Se	gment ID				
1	. Surface Description (Table 3-1)		Grass			
2	. Manning's roughness coeff., n (Table 3-	1)	0.24			
3	. Flow length, L (total L ≤ 300 ft)	ft	100			
4	. Two-yr 24-hr rainfall, P ₂	in	3.34			
5	. Land slope, s	ft/ft	0.02			
6	. 0.007 (nL) ^{0.8}	hr	0.233	+	=	0.233
	Tc = $\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$					
Shallow Cor	centrated Flow					
	Se	gment ID				
	Surface description (paved or unpaved)		unpaved	paved		
	. Flow length, L		360	120		
	. Watercourse slope, s		0.02	0.01		
	. Average velocity, V (figure 3-1)		2.30	2.07		0.050
11	. L T _t =	hr	0.043	+ 0.016	=	0.059
	3600 V					
Channel Flo	<u>w</u> Se	gment ID				
12	. Cross sectional flow area, a	ft ²				
13	. Wetted perimeter, pw	ft				
14	. Hydraulic radius, r= a/pw compute r	ft				
15	. Channel Slope, s	ft/ft				
	. Manning's roughness coeff., n					
17	. V= 1.49 r ^{2/3} s ^{1/2} / n	ft/s	3			
18	. Flow length, L	ft	440			
19	. L	hr	0.0407	+	=	0.041
	T _t =					
20	. Watershed or subarea T_c or T_t (add T_t in	steps 6	11. and 19)		hr	0.333
20		. 3.000 0,	, 10,			
					min	20

Project Location	NOKIA SITE DUPAGE COUNTY, IL		By Checked	JMH	DateDate	9/9/2020
Check one:	Present Developed		SUBAREA 004	1		
Check one:	✓ Tc					
	ace for as many as two segments per ude a map. schematic, or description			ch worksheet		
Sheet Flow	(Applicable to Tc only)	Segment ID				
1	. Surface Description (Table 3-1)		Grass			
2	. Manning's roughness coeff., n (Table	e 3-1)	0.24			
3	. Flow length, L (total L ≤ 300 ft)	ft				
4	. Two-yr 24-hr rainfall, P ₂	in	3.34			
5	. Land slope, s	ft/ft	0.02			
6	. $Tc = \frac{0.007 (nL)^{0.8}}{}$	hr		+	=	
	$P_2^{0.5} s^{0.4}$					
Shallow Con	centrated Flow	Segment ID				
7	. Surface description (paved or unpav	_	unpaved			
	. Flow length, L	,	•			
	. Watercourse slope, s					
10	. Average velocity, V (figure 3-1)					
11	. L	hr		+		
	$T_{t} = \frac{C}{3600 \text{ V}}$					
Channel Flor	<u>w</u>	Segment ID				
12	. Cross sectional flow area, a	ft ²				
13	. Wetted perimeter, pw	ft				
14	. Hydraulic radius, r= a/pw compute	r ft				
	. Channel Slope, s	ft/ft				
16	. Manning's roughness coeff., n					
17	. V= 1.49 r ^{2/3} s ^{1/2} / n	ft/s	3			
18	. Flow length, L	ft				
19	. L	hr		+	=	
	. $T_{t} = \frac{L}{3600 \text{ V}}$					
20	. Watershed or subarea T_c or T_t (add	T_t in steps 6,	11, and 19)		hr	
*This subare	ea is assumed to have the minimum To	c of 0 083 Hr			min	

Tab: 004

Project Location	NOKIA SITE DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/8/2020
Check one:	☐ Present ☐ Developed ☐ Tt		SUBAREA 00	5		
	ace for as many as two segments per flow ude a map. schematic, or description of flo			ch worksheet	t.	
Sheet Flow	(Applicable to Tc only) Seg	ment ID				
1	. Surface Description (Table 3-1)		Grass			
	. Manning's roughness coeff., n (Table 3-1)	0.24			
3	. Flow length, L (total L ≤ 300 ft)	ft	100			
4	. Two-yr 24-hr rainfall, P ₂	in	3.34			
5	. Land slope, s	ft/ft	0.02			
6	. 0.007 (nL) ^{0.8}	hr	0.233	+	=	0.233
	Tc = $\frac{0.007 \text{ (nL)}^{0.8}}{P_2^{0.5} \text{ s}^{0.4}}$					
	12 3				<u></u>	
Shallow Cor	ncentrated Flow Seg	ment ID				
7	. Surface description (paved or unpaved)		unpaved			
8	. Flow length, L		1200			
9	. Watercourse slope, s		0.02			
10	. Average velocity, V (figure 3-1)		2.30			
11	L	hr	0.145	+	=	0.145
	$T_{t} = \frac{L}{3600 \text{ V}}$					
Channel Flo	w					
4.0	_	ment ID				
	. Cross sectional flow area, a	ft ²				
	. Wetted perimeter, pw	ft				
	. Hydraulic radius, r= a/pw compute r	ft				
	. Channel Slope, s	ft/ft				
	. Manning's roughness coeff., n . V= 1.49 $r^{2/3}$ s ^{1/2} / n	£1/-	0			
		ft/s	3			
	. Flow length, L	ft				
19	T_{t} = $\frac{L}{3600 \text{ V}}$	hr		+	= [
	3600 V					
20	. Watershed or subarea T_{c} or T_{t} (add T_{t} in	steps 6,	11, and 19)		hr	0.377
					min	23

Project Location	NOKIA SITE DUPAGE COUN	NTY, IL		By Checked	JMH	Date Date	9/8/2020
Check one:	☐ Present ✓ Tc	✓ Developed ☐ Tt		SUBAREA 00	6		
		s two segments per natic, or description (ch workshe	et.	
Sheet Flow	(Applicable to To	c only)	Segment ID				
1	. Surface Descrip	tion (Table 3-1)		Grass			
2	. Manning's rough	nness coeff., n (Table	e 3-1)	0.24			
3	. Flow length, L (t	otal L < 300 ft)	ft	100			
4	. Two-yr 24-hr rai	nfall, P ₂	in	3.34			
5	. Land slope, s		ft/ft	0.02			
6	. 0.	.007 (nL) ^{0.8}	hr	0.233	+	=	0.233
	Tc =	P ₂ ^{0.5} s ^{0.4}					
Shallow Con	centrated Flow	. 2			T		
Shallow Con	centrated Flow		Segment ID				
7	. Surface descript	tion (paved or unpav	red)	unpaved			
8	. Flow length, L			320			
9	. Watercourse slo	ppe, s		0.02			
10	. Average velocity	/, V (figure 3-1)		2.30			
11	. т_	L	hr	0.039	+	=	0.039
	1 _t =	3600 V					
Channel Flor	<u>w</u>		Segment ID				
12	. Cross sectional	flow area, a	ft ²				
13	. Wetted perimete	er, pw	ft				
14	. Hydraulic radius	, r= a/pw compute	r ft				
15	. Channel Slope,	S	ft/ft				
16	. Manning's rough	nness coeff., n					
17	. V= 1.49 $r^{2/3} s^{1/2}$	/ n	ft/s	3			
18	. Flow length, L		ft				
19		L	hr		+	=	
	T _t =	3600 V					
20	. Watershed or su	ubarea T_c or T_t (add $^{\circ}$	T_t in steps 6,	11, and 19)		hr	0.271
						min	16

Project NOKIA SITE Location DUPAGE COUNTY, IL		By Checked	JMH	Date Date	9/9/2020
Check one: Present Developed		SUBAREA 007	,		
Check one: ☑ Tc ☐ Tt		000/11/2/100/			
NOTES: Space for as many as two segments per fl Include a map. schematic, or description of			ch worksheet.		
Sheet Flow (Applicable to Tc only)	Segment ID				
1. Surface Description (Table 3-1)		Grass			
2. Manning's roughness coeff., n (Table	3-1)	0.24			
3. Flow length, L (total L ≤ 300 ft)	ft	100			
4. Two-yr 24-hr rainfall, P ₂	in	3.34			
5. Land slope, s	ft/ft	0.02			
6. 0.007 (nL) ^{0.8}	hr	0.233	+	=	0.233
6. $Tc = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$					
Γ ₂ δ					
Shallow Concentrated Flow	Segment ID				
7. Surface description (paved or unpave	ed)	unpaved		<u></u>	
8. Flow length, L		100			
9. Watercourse slope, s		0.02			
10. Average velocity, V (figure 3-1)		2.30			
11 L	hr	0.012	+	=	0.012
11. $T_{i} = \frac{L}{3600 \text{ V}}$					
Channel Flow				_	
	Segment ID				
12. Cross sectional flow area, a	ft ²				
13. Wetted perimeter, pw	ft				
14. Hydraulic radius, r= a/pw compute r					
15. Channel Slope, s	ft/ft				
16. Manning's roughness coeff., n					
17. $V = 1.49 r^{2/3} s^{1/2} / n$	ft/s	3			
18. Flow length, L	ft				
19. L T _I = ———	hr	•	+	=	
1₁=					
20. Watershed or subarea T_c or T_t (add T	t_{t} in steps 6,	11, and 19)		hr	0.245
				min	15
				111111	13

Project Location	NOKIA SITE DUPAGE COU	NTY, IL		By Checked	JMH	Date Date	9/9/2020
Check one:	☐ Present ✓ Tc	✓ Developed ☐ Tt		SUBAREA 008	8		
NOTES: Spa		as two segments per matic, or description			ch worksheet		
Sheet Flow	(Applicable to T	c only)	Segment ID				
1	. Surface Descrip	otion (Table 3-1)		Grass			
2	. Manning's roug	hness coeff., n (Tabl	le 3-1)	0.24			
3	. Flow length, L (total L < 300 ft)	ft	t			
4	. Two-yr 24-hr ra	infall, P ₂	in	3.34			
5	. Land slope, s		ft/ft	0.02			
6	i. C	0.007 (nL) ^{0.8} P ₂ ^{0.5} s ^{0.4}	hr		+	=	
		$P_2^{0.5} s^{0.4}$					
Shallow Cor	ncentrated Flow		Segment ID				
7	. Surface descrip	otion (paved or unpav	ved)	unpaved			
8	. Flow length, L						
9	. Watercourse sl	ope, s					
10	. Average velocit	y, V (figure 3-1)					
11		L	hr		+	=	
	T _t =	3600 V					
Channel Flo	<u>w</u>		Segment ID				
12	. Cross sectional	flow area, a	ft ²				
13	. Wetted perimet	er, pw	ft				
14	. Hydraulic radius	s, r= a/pw compute	er ft				
15	. Channel Slope,	s	ft/ft				
16	. Manning's roug	hness coeff., n					
17	$V = 1.49 r^{2/3} s^{1/2}$	/ n	ft/s	3			
18	. Flow length, L		ft				
19	١.	L	hr		+	=	
	T _t =	3600 V					
20	. Watershed or s	ubarea T _c or T _t (add	T _t in steps 6,	11, and 19)		hr	
*This subare	ea is assumed to	have the minimum T	c of 0.083 Hr			min	

PROP SWMF-001				
	STAGE/ ST	TORAGE RE	LATIONSHII	P
			INCREM.	CUMULATIVE
ELEV.	AREA (S.F.)	AREA (AC.)	VOLUME	VOLUME
			(ACFt.)	(Ac-Ft)
737.5	40500	0.930	0.000	0.000
738.0	47180	1.083	0.503	0.503
739.0	66110	1.518	1.300	1.804
739.5	74510	1.711	0.807	2.611
740.0	82910	1.903	0.903	3.514
741.0	98190	2.254	2.079	5.593

PROP SWMF-002				
	STAGE/ ST	ORAGE RE	LATIONSHII	P
			INCREM.	CUMULATIVE
ELEV.	AREA (S.F.)	AREA (AC.)	VOLUME	VOLUME
			(ACFt.)	(Ac-Ft)
732.0	19850	0.456	0.000	0.000
733.0	24480	0.562	0.509	0.509
734.0	29460	0.676	0.619	1.128
735.0	34770	0.798	0.737	1.865
736.0	40460	0.929	0.864	2.729
737.0	46550	1.069	0.999	3.728
738.0	52950	1.216	1.142	4.870
739.0	57340	1.316	1.266	6.136

	PROP SWMF-003				
	STAGE/ ST	TORAGE RE	LATIONSHII	P	
			INCREM.	CUMULATIVE	
ELEV.	AREA (S.F.)	AREA (AC.)	VOLUME	VOLUME	
			(ACFt.)	(Ac-Ft)	
732.0	44660	1.025	0.000	0.000	
733.0	57050	1.310	1.167	1.167	
734.0	69960	1.606	1.458	2.625	
735.0	83450	1.916	1.761	4.386	
736.0	97480	2.238	2.077	6.463	
737.0	112020	2.572	2.405	8.868	
738.0	126990	2.915	2.743	11.611	
739.0	142440	3.270	3.093	14.704	

	PROP SWMF-005				
	STAGE/ ST	TORAGE RE	LATIONSHII	•	
			INCREM.	CUMULATIVE	
ELEV.	AREA (S.F.)	AREA (AC.)	VOLUME	VOLUME	
			(ACFt.)	(Ac-Ft)	
729.0	7800	0.179	0.000	0.000	
730.0	10260	0.236	0.207	0.207	
731.0	13120	0.301	0.268	0.476	
732.0	16350	0.375	0.338	0.814	
733.0	21610	0.496	0.436	1.250	
734.0	30300	0.696	0.596	1.846	
735.0	38650	0.887	0.791	2.637	
736.0	47530	1.091	0.989	3.626	
737.0	56900	1.306	1.199	4.825	

	PROP SWMF-006				
	STAGE/ ST	TORAGE RE	LATIONSHII	•	
			INCREM.	CUMULATIVE	
ELEV.	AREA (S.F.)	AREA (AC.)	VOLUME	VOLUME	
			(ACFt.)	(Ac-Ft)	
729.0	15180	0.348	0.000	0.000	
730.0	18290	0.420	0.384	0.384	
731.0	21690	0.498	0.459	0.843	
732.0	25350	0.582	0.540	1.383	
733.0	29280	0.672	0.627	2.010	
734.0	32980	0.757	0.715	2.725	
735.0	37120	0.852	0.805	3.529	
736.0	40130	0.921	0.887	4.416	
737.0	44410	1.020	0.970	5.386	

	PROP SWMF-007				
	STAGE/ ST	TORAGE RE	LATIONSHII	P	
			INCREM.	CUMULATIVE	
ELEV.	AREA (S.F.)	AREA (AC.)	VOLUME	VOLUME	
			(ACFt.)	(Ac-Ft)	
739.0	13790	0.317	0.000	0.000	
739.5	16730	0.384	0.175	0.175	
740.0	19660	0.451	0.209	0.384	
741.0	25850	0.593	0.522	0.906	

Job #: September 7, 2020 402138 Date:

Project: Naper Commons Revised: ARF Ву:

	PROP SWMF-EX NOKIA 012				
	STAGE/ ST	TORAGE RE	LATIONSHII	9	
			INCREM.	CUMULATIVE	
ELEV.	AREA (S.F.)	AREA (AC.)	VOLUME	VOLUME	
			(ACFt.)	(Ac-Ft)	
730.0	59870	1.374	0.000	0.000	
731.0	67790	1.556	1.465	1.465	
732.0	83920	1.927	1.741	3.207	
733.0	100410	2.305	2.116	5.323	
734.0	117220	2.691	2.498	7.821	
735.0	134590	3.090	2.890	10.711	
735.9	152170	3.493	2.962	13.673	
736.0	161140	3.699	0.360	14.033	
736.5	170160	3.906	1.901	15.934	

Job #: 402138 Date: September 4, 2020

Project: Naper Commons Revised: By: JMH

STORMWATER MANAGEMENT FACILITY 010					
EXIS	STING DAN	ADA WOOD	S TOWNHO	MES	
			INCREM.	CUMULATIVE	
ELEV.	AREA (S.F.)	AREA (AC.)	VOLUME	VOLUME	
			(ACFt.)	(Ac-Ft)	
726.87	43020	0.988	0.000	0.000	
727.0	43870	1.007	0.130	0.130	
728.0	48150	1.105	1.056	1.186	
729.0	52590	1.207	1.156	2.342	
730.0	57050	1.310	1.258	3.601	
731.0	63560	1.459	1.384	4.985	
732.0	68900	1.582	1.520	6.506	
733.0	75500	1.733	1.657	8.163	
734.0	82490	1.894	1.813	9.977	
735.0	90470	2.077	1.985	11.962	
736.00	101600	2.332	2.205	14.167	
736.39	104640	2.402	0.923	15.090	
737.0	114910	2.638	1.537	16.627	
	_	_			

Lucent Technologies

Indian Hill Laboratory Proposed Parking Lot

Naperville, Illinois

Storm Water Management Plan


March, 1998

Prepared For:

Lucent Technologies 1200 Warrenville Road, Room 1A149 Naperville, Illinois 60563 (630) 979-1337

Prepared By:

Roake and Associates, Inc. 1887 High Grove Lane Naperville, Illinois 60540 (630) 355-3232

Lucent Technologies Proposed Parking Lot March, 1998 Page 4

the drainage areas on the Lucent Technologies site were also modified to reflect current conditions.

The modifications to the STS report included the following:

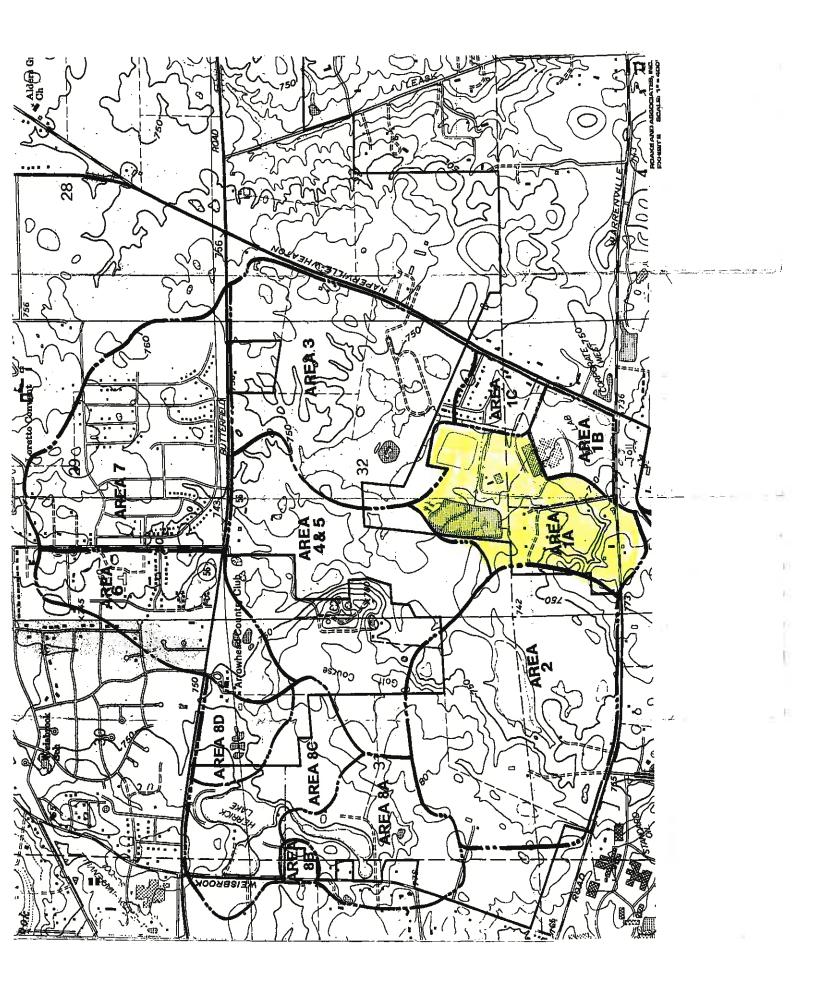
- The size of Area 1A was increased from 142-acres to 168-acres by removing area from Area 1B and Area 3. The increase reflects modifications to the original STS drainage area to correctly mirror the current drainage pattern of the Lucent Technologies site and provide for the proposed parking lot. Also, the CN for Area 1A was increased from 85.2 to 86.2 due to the increased impervious area.
- The size of Area 3 was decreased from 465-acres to 458-acres due to the proposed parking lot in area 1A.
- Area 1C was created within the previous limits of Area 1B based on the construction of the Danada Woods project. Please see the Danada Woods Townhomes Storm Water Management Plan by Roake and Associates, Inc., dated, February 1997, for more information.
- The size of Area 1B was decreased from 142-acres to 63-acres to reflect the drainage area that was moved to Area 1A and the drainage area that was incorporated into the creation of Area 1C. Additionally, the CN was increased from 85.2 to 88.8 to reflect a higher concentration of impervious area and the time of concentration was decreased from 1.0-hours to 0.7-hours

This revised TR-20 watershed model was used to determine the peak runoff and to evaluate if the existing detention basin located in Area 1A contained sufficient storage for the proposed parking lot addition. These values were also compared to the original STS model to determine the effect on the watershed.

It was determined that the existing Lucent Technologies detention basin located in area 1A does contain sufficient existing storage volume to accommodate the proposed parking lot. The original STS storm water model concluded that during the 100-year 24-hour storm event the high water level of this basin was 735.1. Under the proposed conditions the high water level increased to 735.9, which is below the basin's overflow elevation of 736.5.

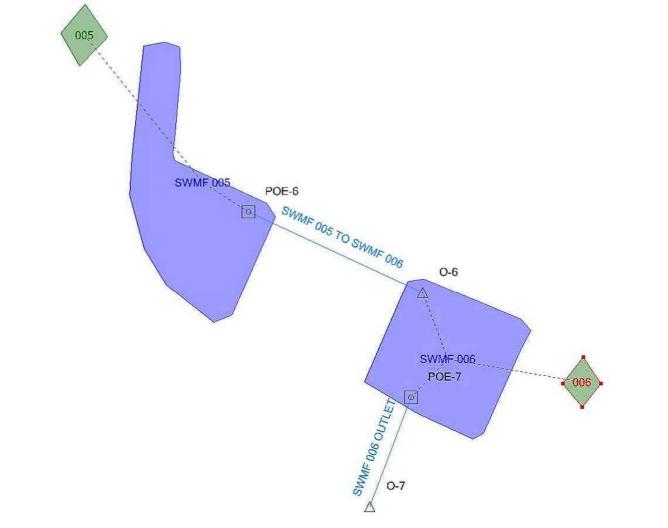
The peak runoff volume for this watershed was also calculated. The original STS storm water model determined that the peak runoff of 195-cfs occurred during the 100-year 1-

*******	ਵਾਂ	ወ ፈሪ ዘ ኤ ጦ	መፈሪዝጆብፈ	ጠፋሪን ዘጀ
(CONTINUED) **************	7.8 12.0 22.8 7.0	0.0 110.0 120.0 32.0 55.5 722.0 1180.0	0 2 2 8 2 8 2 7 8 7 8 7 8 7 8 7 8 7 8 7 8	0.00
INPUT DATA (CONT	4.0 9.0 21.0 231.0	оннииииишш оңоншийоошиг		
LIST OF	736.3 736.5 737.9 740.6	735.5 735.5 735.5 735.5 737.0 738.0 738.0		725. 5 727.1 728.4 728.6
08-08*************	!	0.7	88 00	60
*****	88888888888888888888888888888888888888		BENDTBL STRUCT BESSESSESSESSESSESSESSESSESSESSESSESSESS	9 ENDTBL 3 STRUCT 8 8 8


Presided Action to a proley 13.6 ALFT 121.4 ACFT 121 4 ACFT

735.1 = 107.8 ALFT

STORPICE AT


735.9 =

STORAGE AT

EXHIBIT 2F

"ONSITE" PROPOSED CONDITIONS PONDPACK MODEL & OUTPUT

Scenario Summary					
ID	1				
Label	100Yr 24Hr				
Notes					
Active Topology	Base Active Top	ology			
Hydrology	Base Hydrology				
Rainfall Runoff	100Yr 24Hr				
Physical	Base Physical				
Initial Condition	Base Initial Condition				
Boundary Condition	Base Boundary	Base Boundary Condition			
Infiltration and Inflow	Base Infiltration	and Inflow			
Output	Base Output				
User Data Extensions	Base User Data	Extensions			
PondPack Engine Calculation Options	Base Calculation	n Options			
Output Summary					
Output Increment	0.050 hours	Duration	24.000 hours		
Rainfall Summary					
Return Event Tag	100	Rainfall Type	Time-Depth Curve		
Total Depth	8.6 in	Storm Event	100YR-24HR		
ICPM Output Summary					
Target Convergence	0.00 ft ³ /s	ICPM Time Step	0.050 hours		
Maximum Iterations	35				

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
005	100Yr 24Hr	100	None	2.959	16.000	3.75	(N/A)	(N/A)
006	100Yr 24Hr	100	None	1.981	16.000	2.39	(N/A)	(N/A)
0-7	100Yr 24Hr	100	None	1.008	24.000	0.83	(N/A)	(N/A)
SWMF 005 (IN)	100Yr 24Hr	100	None	2.959	16.000	3.75	(N/A)	(N/A)
SWMF 005 (OUT)	100Yr 24Hr	100	None	1.399	14.950	1.66	733.52	1.559
SWMF 005 (Reverse)	100Yr 24Hr	100	None	0.000	2.300	0.00	(N/A)	(N/A)
SWMF 006 (IN)	100Yr 24Hr	100	None	3.380	14.950	4.03	(N/A)	(N/A)
SWMF 006 (OUT)	100Yr 24Hr	100	None	1.008	24.000	0.83	733.50	2.370

Executive Summary (Links)

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
SWMF 005 TO SWMF 006	Pond Outlet	Upstream	2.959	16.000	3.75	SWMF 005	Pond Inflow
SWMF 005 TO SWMF 006	Pond Outlet	Outflow	1.399	14.950	1.66	SWMF 005	Pond Outflow
SWMF 005 TO SWMF 006	Negative Flow	Outflow	0.000	2.300	0.00	SWMF 005	Pond Outflow
SWMF 005 TO SWMF 006	Pond Outlet	Link	1.397	14.950	1.66		
SWMF 005 TO SWMF 006	Pond Outlet	Downstream	3.380	14.950	4.03	SWMF 006	
SWMF 006 OUTLET	Pond Outlet	Upstream	3.380	14.950	4.03	SWMF 006	Pond Inflow
SWMF 006 OUTLET	Pond Outlet	Outflow	1.008	24.000	0.83	SWMF 006	Pond Outflow
SWMF 006 OUTLET	Pond Outlet	Link	1.008	24.000	0.83		
SWMF 006 OUTLET	Pond Outlet	Downstream	1.008	24.000	0.83	O-7	

Messages

Message Id	15
Scenario	100Yr 24Hr
Element Type	Composite Outlet Structure
Element Id	66
Label	SWMF 005 TO SWMF 006
Time	(N/A)
Message	Kr (reverse flow entrance loss coefficient) was not specified. Kr was set to same value as $Ke = 0.200$.
Source	Warning
Message Id	39
Scenario	100Yr 24Hr
Element Type	Composite Outlet Structure
Element Id	66
Label	SWMF 005 TO SWMF 006
Time	(N/A)
Message	Reverse flow conditions encountered for one or more headwater elevations. Calculated reverse flows may be approximate.
Source	Warning

Table of Contents

UPDATED 100YR 12HR-48HR	Time-Depth Curve, 100 years	1
005		
	Unit Hydrograph Summary, 100 years	2
006		
	Unit Hydrograph Summary, 100 years	4
SWMF 005		
	Elevation vs. Volume Curve, 100 years	6
SWMF 006		
	Elevation vs. Volume Curve, 100 years	7
SWMF 005 TO SWMF 006		
	Outlet Input Data, 100 years	8
SWMF 006 OUTLET		
	Outlet Input Data, 100 years	10

Subsection: Time-Depth Curve Return Event: 100 years Label: UPDATED 100YR 12HR-48HR Storm Event: 100YR-24HR

	100) (5 0 11 15	
Time-Depth Curve: 100YR-24HR		
Label	100YR-24HR	
Start Time	0.000 hours	
Increment	1.000 hours	
End Time	24.000 hours	
Return Event	100 years	

CUMULATIVE RAINFALL (in) Output Time Increment = 1.000 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.2	0.4	0.6	0.8
5.000	1.0	1.2	1.4	1.7	2.0
10.000	2.3	2.7	3.1	3.8	4.5
15.000	5.2	6.0	6.7	7.3	7.7
20.000	8.0	8.2	8.3	8.4	8.6

Subsection: Unit Hydrograph Summary Return Event: 100 years

Label: 005 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	24.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.380 hours
Area (User Defined)	5.140 acres
Computational Time Increment	0.051 hours
Time to Peak (Computed)	16.011 hours
Flow (Peak, Computed)	3.75 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	3.75 ft³/s
Drainage Area	
SCS CN (Composite)	86.500
Area (User Defined)	5.140 acres
Maximum Retention (Pervious)	1.6 in
Maximum Retention (Pervious, 20 percent)	0.3 in
0 1 " 5 "	
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	6.9 in
Runoff Volume (Pervious)	2.975 ac-ft
Hydrograph Volume (Area unde	er Hydrograph curve)
Volume	2.959 ac-ft
volume	2.555 ac it
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.380 hours
Computational Time Increment	0.051 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	15.33 ft ³ /s
Unit peak time, Tp	0.253 hours
	Hacetad Mothods Solution

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Subsection: Unit Hydrograph Summary Return Event: 100 years

Label: 005 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	1.013 hours
Total unit time, Tb	1.267 hours

Subsection: Unit Hydrograph Summary Return Event: 100 years Label: 006 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	24.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.270 hours
Area (User Defined)	3.180 acres
Computational Time Increment	0.036 hours
Time to Peak (Computed)	15.984 hours
Flow (Peak, Computed)	2.39 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	2.39 ft ³ /s
Drainage Area	
SCS CN (Composite)	91.100
Area (User Defined)	3.180 acres
Maximum Retention (Pervious)	1.0 in
Maximum Retention (Pervious, 20 percent)	0.2 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	7.5 in
Runoff Volume (Pervious)	1.987 ac-ft
Hydrograph Volume (Area und	ler Hydrograph curve)
Volume	1.981 ac-ft
SCS Unit Hydrograph Parame	ters
Time of Concentration (Composite)	0.270 hours
Computational Time Increment	0.036 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	13.34 ft ³ /s
Unit peak time, Tp	0.180 hours
. , ,	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Subsection: Unit Hydrograph Summary Return Event: 100 years

Label: 006 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	0.720 hours
Total unit time, Tb	0.900 hours

Subsection: Elevation vs. Volume Curve Return Event: 100 years

Label: SWMF 005 Storm Event: 100YR-24HR

Elevation-Volume

Pond Elevation (ft)	Pond Volume (ac-ft)
729.00	0.000
730.00	0.207
731.00	0.476
732.00	0.814
733.00	1.250
734.00	1.846
735.00	2.637
736.00	3.626
737.00	4.825

Subsection: Elevation vs. Volume Curve Return Event: 100 years

Label: SWMF 006 Storm Event: 100YR-24HR

Elevation-Volume

Pond Elevation (ft)	Pond Volume (ac-ft)
729.00	0.000
730.00	0.384
731.00	0.843
732.00	1.383
733.00	2.010
734.00	2.725
735.00	3.529
736.00	4.416
737.00	5.386

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 005 TO SWMF 006 Storm Event: 100YR-24HR

Requested Pond Water Surface Elevations					
Minimum (Headwater) 729.00 ft					
Increment (Headwater)	0.10 ft				
Maximum (Headwater)	737.00 ft				

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Culvert-Circular	Culvert - 1	Forward + Reverse	TW	729.00	737.00
Rectangular Weir	Weir - 1	Forward + Reverse	TW	736.00	737.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 005 TO SWMF 006 Storm Event: 100YR-24HR

Structure ID: Weir - 1 Structure Type: Rectangular Weir			
Number of Openings	1		
Elevation	736.00 ft		
Weir Length	40.00 ft		
Weir Coefficient	3.00 (ft^0.5)/s		
Structure ID: Culvert - 1 Structure Type: Culvert-Circular			
Number of Barrels	1		
Diameter	24.0 in		
Length	330.00 ft		
Length (Computed Barrel)	330.00 ft		
Slope (Computed)	0.000 ft/ft		
Outlet Control Data			
Manning's n	0.013		
Ke	0.200		
Kb	0.012		
Kr	0.000		
Convergence Tolerance	0.00 ft		
Inlet Control Data			
Equation Form	Form 1		
K	0.0045		
М	2.0000		
С	0.0317		
Υ	0.6900		
T1 ratio (HW/D)	1.095		
T2 ratio (HW/D)	1.197		
Slope Correction Factor	-0.500		

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	731.19 ft	T1 Flow	15.55 ft ³ /s
T2 Elevation	731.39 ft	T2 Flow	17.77 ft ³ /s

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 006 OUTLET Storm Event: 100YR-24HR

Requested Pond Water Surface Elevations					
Minimum (Headwater) 729.00 ft					
Increment (Headwater)	0.10 ft				
Maximum (Headwater)	737.00 ft				

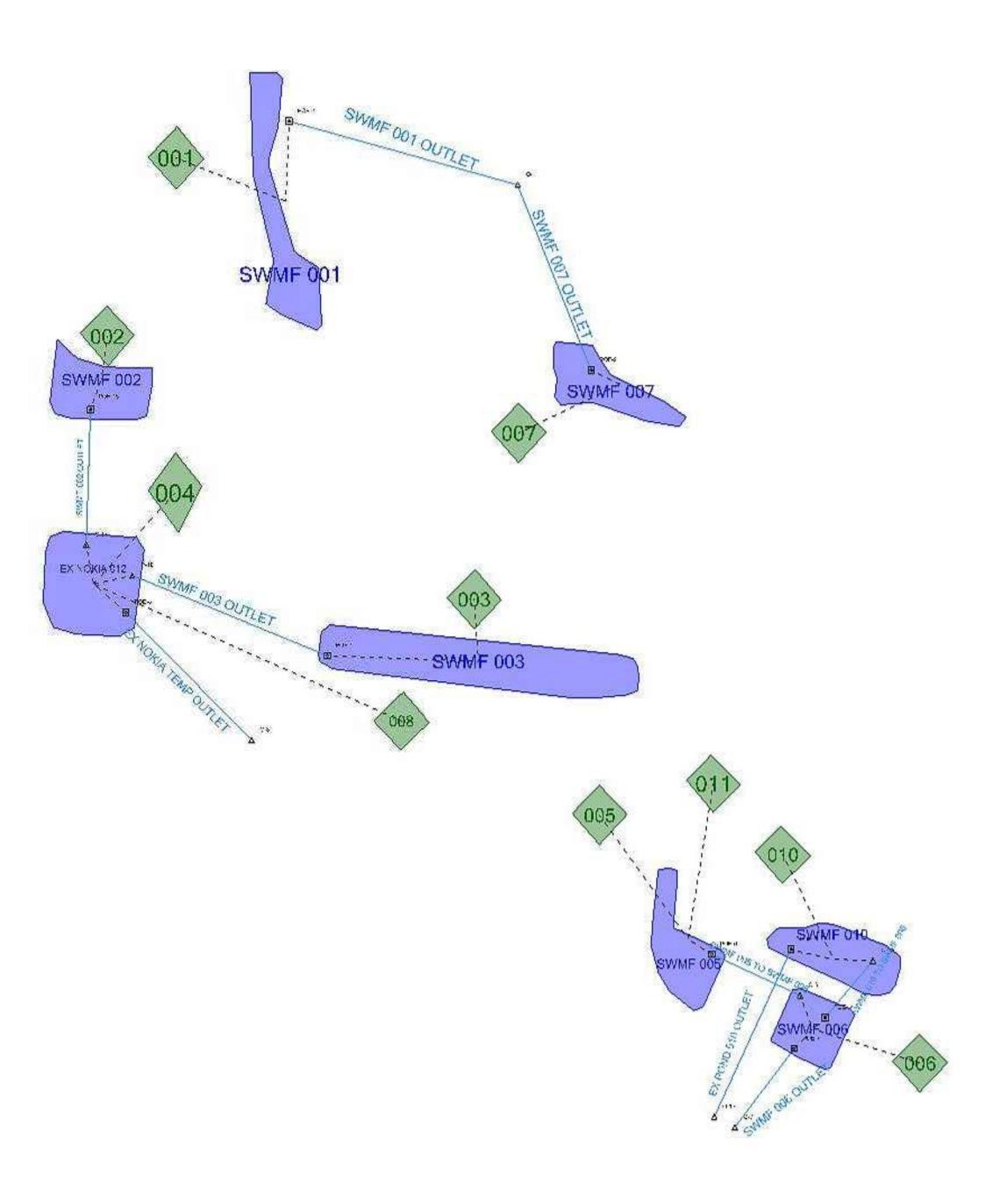
Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward	TW	729.01	737.00
Rectangular Weir	Weir - 1	Forward	TW	736.00	737.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years
Label: SWMF 006 OUTLET Storm Event: 100YR-24HR

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	728.50 ft
Orifice Diameter	3.8 in
Orifice Coefficient	0.600
Structure ID: Weir - 1 Structure Type: Rectangular We	ir
Number of Openings	1
Elevation	736.00 ft
Weir Length	40.00 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: TW Structure Type: TW Setup, DS C	
Tailwater Type	Free Outfall
Convergence Tolerances	
Maximum Iterations	30
Tailwater Tolerance	
(Minimum)	0.01 ft
	0.01 ft 0.50 ft
(Minimum) Tailwater Tolerance	
(Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance	0.50 ft
(Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum) Headwater Tolerance	0.50 ft 0.01 ft

Index


```
0
005 (Unit Hydrograph Summary, 100 years)...2, 3
006 (Unit Hydrograph Summary, 100 years)...4, 5
S
SWMF 005 (Elevation vs. Volume Curve, 100 years)...6
SWMF 005 TO SWMF 006 (Outlet Input Data, 100 years)...8, 9
SWMF 006 (Elevation vs. Volume Curve, 100 years)...7
SWMF 006 OUTLET (Outlet Input Data, 100 years)...11
U
UPDATED 100YR 12HR-48HR (Time-Depth Curve, 100 years)...1
```

Bentley PondPack V8i

[08.11.01.54] Page 12 of 12

EXHIBIT 2G

"PROP" PROPOSED CONDITIONS PONDPACK MODEL & OUTPUT

Scenario Summary						
ID	1					
Label	100Yr 24Hr					
Notes						
Active Topology	Base Active Topology					
Hydrology	Base Hydrology					
Rainfall Runoff	100Yr 24Hr					
Physical	Base Physical					
Initial Condition	Base Initial Condition					
Boundary Condition	Base Boundary (
Infiltration and Inflow	Base Infiltration and Inflow					
Output	Base Output					
User Data Extensions	Base User Data I					
PondPack Engine Calculation Options	Base Calculation	Options				
Output Summary						
Output Increment	0.050 hours	Duration	24.000 hours			
Rainfall Summary						
Return Event Tag	100	Rainfall Type	Time-Depth Curve			
Total Depth	8.6 in	Storm Event	100YR-24HR			
ICPM Output Summary						
Target Convergence	0.00 ft ³ /s	ICPM Time Step	0.020 hours			
Maximum Iterations	35					

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
001	100Yr 24Hr	100	None	2.507	16.000	3.11	(N/A)	(N/A)
002	100Yr 24Hr	100	None	11.863	16.000	14.93	(N/A)	(N/A)
003	100Yr 24Hr	100	None	14.100	16.000	17.45	(N/A)	(N/A)
004	100Yr 24Hr	100	None	1.318	16.000	1.67	(N/A)	(N/A)
005	100Yr 24Hr	100	None	2.959	16.000	3.75	(N/A)	(N/A)
006	100Yr 24Hr	100	None	1.981	16.000	2.39	(N/A)	(N/A)
007	100Yr 24Hr	100	None	1.370	16.000	1.69	(N/A)	(N/A)
008	100Yr 24Hr	100	None	0.417	16.000	0.51	(N/A)	(N/A)
010	100Yr 24Hr	100	None	15.436	16.050	20.08	(N/A)	(N/A)
011	100Yr 24Hr	100	None	5.729	16.000	7.72	(N/A)	(N/A)
EX NOKIA 012 (IN)	100Yr 24Hr	100	None	13.613	17.000	12.42	(N/A)	(N/A)
EX NOKIA 012 (OUT)	100Yr 24Hr	100	None	2.921	24.000	3.83	734.99	10.689
O-1	100Yr 24Hr	100	None	1.191	18.150	1.22	(N/A)	(N/A)
O-13	100Yr 24Hr	100	None	1.585	24.000	1.91	(N/A)	(N/A)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
0-7	100Yr 24Hr	100	None	0.864	24.000	0.80	(N/A)	(N/A)
O-8 SWMF 001	100Yr 24Hr	100	None	2.921	24.000	3.83	(N/A)	(N/A)
(IN)	100Yr 24Hr	100	None	2.507	16.000	3.11	(N/A)	(N/A)
SWMF 001 (OUT)	100Yr 24Hr	100	None	0.039	24.000	0.04	739.41	2.468
SWMF 002 (IN)	100Yr 24Hr	100	None	11.863	16.000	14.93	(N/A)	(N/A)
SWMF 002 (OUT)	100Yr 24Hr	100	None	8.894	17.300	8.10	737.31	4.083
SWMF 003 (IN)	100Yr 24Hr	100	None	14.100	16.000	17.45	(N/A)	(N/A)
SWMF 003 (OUT)	100Yr 24Hr	100	None	2.984	18.350	2.35	737.82	11.115
SWMF 005 (IN)	100Yr 24Hr	100	None	8.688	16.000	11.47	(N/A)	(N/A)
SWMF 005 (OUT)	100Yr 24Hr	100	None	4.665	14.800	9.21	736.33	4.023
SWMF 005 (Reverse)	100Yr 24Hr	100	None	0.000	2.500	0.00	(N/A)	(N/A)
SWMF 006 (IN)	100Yr 24Hr	100	None	6.646	14.800	11.59	(N/A)	(N/A)
SWMF 006 (OUT)	100Yr 24Hr	100	None	2.023	14.700	11.21	736.33	4.733
SWMF 006 (Reverse)	100Yr 24Hr	100	None	-0.027	16.700	-1.86	(N/A)	(N/A)
SWMF 007 (IN)	100Yr 24Hr	100	None	1.370	16.000	1.69	(N/A)	(N/A)
SWMF 007 (OUT)	100Yr 24Hr	100	None	1.152	18.150	1.19	740.14	0.459
SWMF 010 (IN)	100Yr 24Hr	100	None	16.559	14.700	30.13	(N/A)	(N/A)
SWMF 010 (OUT)	100Yr 24Hr	100	None	1.585	24.000	1.91	736.33	14.943

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
EX NOKIA TEMP OUTLET	Pond Outlet	Upstream	13.613	17.000	12.42	EX NOKIA 012	Pond Inflow
EX NOKIA TEMP OUTLET	Pond Outlet	Outflow	2.921	24.000	3.83	EX NOKIA 012	Pond Outflow

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
EX NOKIA TEMP OUTLET	Pond Outlet	Link	2.921	24.000	3.83		
EX NOKIA TEMP OUTLET	Pond Outlet	Downstream	2.921	24.000	3.83	O-8	
EX POND 010 OUTLET	Pond Outlet	Upstream	16.559	14.700	30.13	SWMF 010	Pond Inflow
EX POND 010 OUTLET	Pond Outlet	Outflow	1.585	24.000	1.91	SWMF 010	Pond Outflow
EX POND 010 OUTLET	Pond Outlet	Link	1.585	24.000	1.91		
EX POND 010 OUTLET	Pond Outlet	Downstream	1.585	24.000	1.91	O-13	
SWMF 001 OUTLET	Pond Outlet	Upstream	2.507	16.000	3.11	SWMF 001	Pond Inflow
SWMF 001 OUTLET	Pond Outlet	Outflow	0.039	24.000	0.04	SWMF 001	Pond Outflow
SWMF 001 OUTLET	Pond Outlet	Link	0.039	24.000	0.04		
SWMF 001 OUTLET	Pond Outlet	Downstream	1.191	18.150	1.22	0-1	
SWMF 002 OUTLET	Pond Outlet	Upstream	11.863	16.000	14.93	SWMF 002	Pond Inflow
SWMF 002 OUTLET	Pond Outlet	Outflow	8.894	17.300	8.10	SWMF 002	Pond Outflow
SWMF 002 OUTLET	Pond Outlet	Link	8.873	17.300	8.10		
SWMF 002 OUTLET	Pond Outlet	Downstream	13.613	17.000	12.42	EX NOKIA 012	
SWMF 003 OUTLET	Pond Outlet	Upstream	14.100	16.000	17.45	SWMF 003	Pond Inflow
SWMF 003 OUTLET	Pond Outlet	Outflow	2.984	18.350	2.35	SWMF 003	Pond Outflow
SWMF 003 OUTLET	Pond Outlet	Link	2.984	18.350	2.35		
SWMF 003 OUTLET	Pond Outlet	Downstream	13.613	17.000	12.42	EX NOKIA 012	
SWMF 005 TO SWMF 006	Pond Outlet	Upstream	8.688	16.000	11.47	SWMF 005	Pond Inflow
SWMF 005 TO SWMF 006	Pond Outlet	Outflow	4.665	14.800	9.21	SWMF 005	Pond Outflow
SWMF 005 TO SWMF 006	Negative Flow	Outflow	0.000	2.500	0.00	SWMF 005	Pond Outflow

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
SWMF 005 TO SWMF 006	Pond Outlet	Link	4.660	14.800	9.21		
SWMF 005 TO SWMF 006	Negative Flow	Link	0.000	2.500	0.00		
SWMF 005 TO SWMF 006	Pond Outlet	Downstream	6.646	14.800	11.59	SWMF 006	
SWMF 006 OUTLET	Pond Outlet	Upstream	6.646	14.800	11.59	SWMF 006	Pond Inflow
SWMF 006 OUTLET	Pond Outlet	Outflow	2.023	14.700	11.21	SWMF 006	Pond Outflow
SWMF 006 OUTLET	Negative Flow	Outflow	-0.027	16.700	-1.86	SWMF 006	Pond Outflow
SWMF 006 OUTLET	Pond Outlet	Link	0.864	24.000	0.80		
SWMF 006 OUTLET	Pond Outlet	Downstream	0.864	24.000	0.80	O-7	
SWMF 007 OUTLET	Pond Outlet	Upstream	1.370	16.000	1.69	SWMF 007	Pond Inflow
SWMF 007 OUTLET	Pond Outlet	Outflow	1.152	18.150	1.19	SWMF 007	Pond Outflow
SWMF 007 OUTLET	Pond Outlet	Link	1.152	18.150	1.19		
SWMF 007 OUTLET	Pond Outlet	Downstream	1.191	18.150	1.22	O-1	
SWMF 010 TO SWMF 006	Pond Outlet	Upstream	6.646	14.800	11.59	SWMF 006	Pond Inflow
SWMF 010 TO SWMF 006	Pond Outlet	Outflow	2.023	14.700	11.21	SWMF 006	Pond Outflow
SWMF 010 TO SWMF 006	Negative Flow	Outflow	-0.027	16.700	-1.86	SWMF 006	Pond Outflow
SWMF 010 TO SWMF 006	Pond Outlet	Link	1,414.299	24.000	2,942.54		
SWMF 010 TO SWMF 006	Pond Outlet	Downstream	16.559	14.700	30.13	SWMF 010	

Messages

Scenario Summary							
ID	111						
Label	100YR-12HR						
Notes							
Active Topology	<i>> Base Active</i>	e Topology					
Hydrology	<i>> Base Hydro</i>	ology					
Rainfall Runoff	100YR-12HR						
Physical	<i>> Base Physic</i>	cal					
Initial Condition	<i>> Base Initial Condition</i>						
Boundary Condition	<i>> Base Bound</i>	<i>> Base Boundary Condition</i>					
Infiltration and Inflow	<i>> Base Infiltration and Inflow</i>						
Output	<i>> Base Output</i>						
User Data Extensions	<i>> Base User Data Extensions</i>						
PondPack Engine Calculation Options	<i>> Base Calcu</i>	lation Options					
Output Summary							
Output Increment	0.050 hours	Duration	24.000 hours				
Rainfall Summary							
Return Event Tag	100	Rainfall Type	Time-Depth Curve				
Total Dooth	7 F in	Ctarm Frant					
Total Depth	7.5 in	Storm Event	100YR-12HR				
ICPM Output Summary							
Target Convergence	0.00 ft ³ /s ICPM Time Step 0.020 h						
Maximum Iterations	35	•					

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
001	100YR- 12HR	100	None	2.135	5.000	5.31	(N/A)	(N/A)
002	100YR- 12HR	100	None	10.082	5.050	25.17	(N/A)	(N/A)
003	100YR- 12HR	100	None	12.026	5.050	29.72	(N/A)	(N/A)
004	100YR- 12HR	100	None	1.115	5.000	2.83	(N/A)	(N/A)
005	100YR- 12HR	100	None	2.513	5.050	6.28	(N/A)	(N/A)
006	100YR- 12HR	100	None	1.697	5.000	4.13	(N/A)	(N/A)
007	100YR- 12HR	100	None	1.168	5.000	2.89	(N/A)	(N/A)
008	100YR- 12HR	100	None	0.356	5.000	0.88	(N/A)	(N/A)

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
010	100YR- 12HR	100	None	13.041	5.100	32.82	(N/A)	(N/A)
011	100YR- 12HR	100	None	4.779	5.050	12.42	(N/A)	(N/A)
EX NOKIA 012 (IN)	100YR- 12HR	100	None	13.925	6.000	15.41	(N/A)	(N/A)
EX NOKIA 012 (OUT)	100YR- 12HR	100	None	4.854	17.100	3.62	734.65	9.711
0-1	100YR- 12HR	100	None	1.175	7.650	1.34	(N/A)	(N/A)
0-13	100YR- 12HR	100	None	2.701	12.400	1.80	(N/A)	(N/A)
0-7	100YR- 12HR	100	None	1.199	12.400	0.75	(N/A)	(N/A)
O-8	100YR- 12HR	100	None	4.854	17.100	3.62	(N/A)	(N/A)
SWMF 001 (IN)	100YR- 12HR	100	None	2.135	5.000	5.31	(N/A)	(N/A)
SWMF 001 (OUT)	100YR- 12HR	100	None	0.055	12.400	0.03	739.19	2.112
SWMF 002 (IN)	100YR- 12HR	100	None	10.082	5.050	25.16	(N/A)	(N/A)
SWMF 002 (OUT)	100YR- 12HR	100	None	8.619	6.600	10.05	737.87	4.726
SWMF 003 (IN)	100YR- 12HR	100	None	12.026	5.000	29.72	(N/A)	(N/A)
SWMF 003 (OUT)	100YR- 12HR	100	None	3.836	6.950	2.59	737.47	10.166
SWMF 005 (IN)	100YR- 12HR	100	None	7.292	5.050	18.69	(N/A)	(N/A)
SWMF 005 (OUT)	100YR- 12HR	100	None	4.735	6.050	12.14	735.58	3.211
SWMF 005 (Reverse)	100YR- 12HR	100	None	0.000	1.400	0.00	(N/A)	(N/A)
SWMF 006 (IN)	100YR- 12HR	100	None	6.432	6.050	15.54	(N/A)	(N/A)
SWMF 006 (OUT)	100YR- 12HR	100	None	2.566	5.950	15.26	735.56	4.022
SWMF 006 (Reverse)	100YR- 12HR	100	None	-0.002	9.100	-0.53	(N/A)	(N/A)
SWMF 007 (IN)	100YR- 12HR	100	None	1.168	5.000	2.89	(N/A)	(N/A)
SWMF 007 (OUT)	100YR- 12HR	100	None	1.121	7.650	1.31	740.33	0.558
SWMF 010 (IN)	100YR- 12HR	100	None	14.408	5.650	44.57	(N/A)	(N/A)

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
SWMF 010 (OUT)	100YR- 12HR	100	None	2.701	12.400	1.80	735.56	13.188

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
EX NOKIA TEMP OUTLET	Pond Outlet	Upstream	13.925	6.000	15.41	EX NOKIA 012	Pond Inflow
EX NOKIA TEMP OUTLET	Pond Outlet	Outflow	4.854	17.100	3.62	EX NOKIA 012	Pond Outflow
EX NOKIA TEMP OUTLET	Pond Outlet	Link	4.854	17.100	3.62		
EX NOKIA TEMP OUTLET	Pond Outlet	Downstream	4.854	17.100	3.62	O-8	
EX POND 010 OUTLET	Pond Outlet	Upstream	14.408	5.650	44.57	SWMF 010	Pond Inflow
EX POND 010 OUTLET	Pond Outlet	Outflow	2.701	12.400	1.80	SWMF 010	Pond Outflow
EX POND 010 OUTLET	Pond Outlet	Link	2.701	12.400	1.80		
EX POND 010 OUTLET	Pond Outlet	Downstream	2.701	12.400	1.80	O-13	
SWMF 001 OUTLET	Pond Outlet	Upstream	2.135	5.000	5.31	SWMF 001	Pond Inflow
SWMF 001 OUTLET	Pond Outlet	Outflow	0.055	12.400	0.03	SWMF 001	Pond Outflow
SWMF 001 OUTLET	Pond Outlet	Link	0.055	12.400	0.03		
SWMF 001 OUTLET	Pond Outlet	Downstream	1.175	7.650	1.34	O-1	
SWMF 002 OUTLET	Pond Outlet	Upstream	10.082	5.050	25.16	SWMF 002	Pond Inflow
SWMF 002 OUTLET	Pond Outlet	Outflow	8.619	6.600	10.05	SWMF 002	Pond Outflow
SWMF 002 OUTLET	Pond Outlet	Link	8.619	6.600	10.05		
SWMF 002 OUTLET	Pond Outlet	Downstream	13.925	6.000	15.41	EX NOKIA 012	
SWMF 003 OUTLET	Pond Outlet	Upstream	12.026	5.000	29.72	SWMF 003	Pond Inflow

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
SWMF 003 OUTLET	Pond Outlet	Outflow	3.836	6.950	2.59	SWMF 003	Pond Outflow
SWMF 003 OUTLET	Pond Outlet	Link	3.836	6.950	2.59		
SWMF 003 OUTLET SWMF 005	Pond Outlet	Downstream	13.925	6.000	15.41	EX NOKIA 012	
TO SWMF	Pond Outlet	Upstream	7.292	5.050	18.69	SWMF 005	Pond Inflow
SWMF 005 TO SWMF 006	Pond Outlet	Outflow	4.735	6.050	12.14	SWMF 005	Pond Outflow
SWMF 005 TO SWMF 006	Negative Flow	Outflow	0.000	1.400	0.00	SWMF 005	Pond Outflow
SWMF 005 TO SWMF 006	Pond Outlet	Link	4.735	6.050	12.14		
SWMF 005 TO SWMF 006	Negative Flow	Link	0.000	1.400	0.00		
SWMF 005 TO SWMF 006	Pond Outlet	Downstream	6.432	6.050	15.54	SWMF 006	
SWMF 006 OUTLET	Pond Outlet	Upstream	6.432	6.050	15.54	SWMF 006	Pond Inflow
SWMF 006 OUTLET	Pond Outlet	Outflow	2.566	5.950	15.26	SWMF 006	Pond Outflow
SWMF 006 OUTLET	Negative Flow	Outflow	-0.002	9.100	-0.53	SWMF 006	Pond Outflow
SWMF 006 OUTLET	Pond Outlet	Link	1.199	12.400	0.75		
SWMF 006 OUTLET	Pond Outlet	Downstream	1.199	12.400	0.75	0-7	
SWMF 007 OUTLET	Pond Outlet	Upstream	1.168	5.000	2.89	SWMF 007	Pond Inflow
SWMF 007 OUTLET	Pond Outlet	Outflow	1.121	7.650	1.31	SWMF 007	Pond Outflow
SWMF 007 OUTLET	Pond Outlet	Link	1.121	7.650	1.31		
SWMF 007 OUTLET	Pond Outlet	Downstream	1.175	7.650	1.34	0-1	
SWMF 010 TO SWMF 006	Pond Outlet	Upstream	6.432	6.050	15.54	SWMF 006	Pond Inflow
SWMF 010 TO SWMF 006	Pond Outlet	Outflow	2.566	5.950	15.26	SWMF 006	Pond Outflow

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
SWMF 010 TO SWMF 006	Negative Flow	Outflow	-0.002	9.100	-0.53	SWMF 006	Pond Outflow
SWMF 010 TO SWMF 006	Pond Outlet	Link	2,020.757	12.400	1,852.79		
SWMF 010 TO SWMF 006	Pond Outlet	Downstream	14.408	5.650	44.57	SWMF 010	

Messages

Message Id	69
Scenario	2YR-1HR
Element Type	Pond
Element Id	44
Label	SWMF 006
Time	(N/A)
Message	The pond has a diversion with both interconnected and level pool outlet structures. It is recommended that you use either all interconnected or all level pool outlet structures with a diversion from a pond.
Source	Warning
Message Id	71
Scenario	2YR-1HR
Element Type	Pond
Element Id	44
Label	SWMF 006
Time	(N/A)
Message	The pond SWMF 006 has a mixed diversion using both a level pool and interconnected pond route. This configuration may lead to a loop in the system. PondPack does not support loops. Please review your network topology for any possible loops.
Source	Warning
Message Id	39
Scenario	2YR-1HR
Element Type	Composite Outlet Structure
Element Id	87
Label	EX NOKIA TEMP OUTLET
Time	(N/A)
Message	Reverse flow conditions encountered for one or more headwater elevations. Calculated reverse flows may be approximate.
Source	Warning

Scenario Summary								
ID	116							
Label	2YR-24HR							
Notes								
Active Topology	Base Active Topo	ology						
Hydrology	Base Hydrology							
Rainfall Runoff	2YR-24HR							
Physical	Base Physical	·						
Initial Condition	Base Initial Condition							
Boundary Condition	Base Boundary Condition							
Infiltration and Inflow	Base Infiltration and Inflow							
Output	Base Output							
User Data Extensions	Base User Data Extensions							
PondPack Engine Calculation Options	Base Calculation	Options						
Output Summary								
Output Increment	0.050 hours	Duration	24.000 hours					
Rainfall Summary								
Return Event Tag	2	Rainfall Type	Time-Depth Curve					
Total Depth	3.3 in	Storm Event	2YR-24HR					
ICPM Output Summary								
Target Convergence	0.00 ft ³ /s	ICPM Time Step	0.020 hours					
Maximum Iterations	35							

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
001	2YR-24HR	2	None	0.755	16.000	1.06	(N/A)	(N/A)
002	2YR-24HR	2	None	3.458	16.050	4.96	(N/A)	(N/A)
003	2YR-24HR	2	None	4.266	16.050	5.97	(N/A)	(N/A)
004	2YR-24HR	2	None	0.379	16.000	0.55	(N/A)	(N/A)
005	2YR-24HR	2	None	0.850	16.050	1.23	(N/A)	(N/A)
006	2YR-24HR	2	None	0.633	16.000	0.85	(N/A)	(N/A)
007	2YR-24HR	2	None	0.417	16.000	0.58	(N/A)	(N/A)
008	2YR-24HR	2	None	0.130	16.000	0.18	(N/A)	(N/A)
010	2YR-24HR	2	None	4.155	16.100	6.21	(N/A)	(N/A)
011	2YR-24HR	2	None	1.403	16.050	2.20	(N/A)	(N/A)
EX NOKIA 012 (IN)	2YR-24HR	2	None	5.280	17.000	6.57	(N/A)	(N/A)
EX NOKIA 012 (OUT)	2YR-24HR	2	None	0.874	24.000	1.92	732.57	4.404
O-1	2YR-24HR	2	None	0.337	18.050	0.48	(N/A)	(N/A)
O-13	2YR-24HR	2	None	0.292	24.000	0.65	(N/A)	(N/A)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.54] Page 1 of 7

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
0-7	2YR-24HR	2	None	0.424	24.000	0.51	(N/A)	(N/A)
0-8	2YR-24HR	2	None	0.874	24.000	1.92	(N/A)	(N/A)
SWMF 001 (IN)	2YR-24HR	2	None	0.755	16.000	1.06	(N/A)	(N/A)
SWMF 001 (OUT)	2YR-24HR	2	None	0.019	24.000	0.02	738.18	0.737
SWMF 002 (IN)	2YR-24HR	2	None	3.458	16.050	4.96	(N/A)	(N/A)
SWMF 002 (OUT)	2YR-24HR	2	None	3.116	17.300	4.27	733.27	0.676
SWMF 003 (IN)	2YR-24HR	2	None	4.266	16.000	5.97	(N/A)	(N/A)
SWMF 003 (OUT)	2YR-24HR	2	None	1.655	18.600	1.75	734.05	2.711
SWMF 005 (IN)	2YR-24HR	2	None	2.253	16.050	3.43	(N/A)	(N/A)
SWMF 005 (OUT)	2YR-24HR	2	None	1.327	16.900	2.02	732.26	0.926
SWMF 005 (Reverse)	2YR-24HR	2	None	0.000	5.400	0.00	(N/A)	(N/A)
SWMF 006 (IN)	2YR-24HR	2	None	1.960	16.050	2.85	(N/A)	(N/A)
SWMF 006 (OUT)	2YR-24HR	2	None	0.424	24.000	0.51	732.24	1.535
SWMF 007 (IN)	2YR-24HR	2	None	0.417	16.000	0.58	(N/A)	(N/A)
SWMF 007 (OUT)	2YR-24HR	2	None	0.318	17.500	0.46	739.46	0.162
SWMF 010 (IN)	2YR-24HR	2	None	4.155	16.100	6.21	(N/A)	(N/A)
SWMF 010 (OUT)	2YR-24HR	2	None	0.292	24.000	0.65	730.19	3.862

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
EX NOKIA TEMP OUTLET	Pond Outlet	Upstream	5.280	17.000	6.57	EX NOKIA 012	Pond Inflow
EX NOKIA TEMP OUTLET	Pond Outlet	Outflow	0.874	24.000	1.92	EX NOKIA 012	Pond Outflow
EX NOKIA TEMP OUTLET	Pond Outlet	Link	0.874	24.000	1.92		

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
EX NOKIA TEMP OUTLET	Pond Outlet	Downstream	0.874	24.000	1.92	O-8	
EX POND 010 OUTLET	Pond Outlet	Upstream	4.155	16.100	6.21	SWMF 010	Pond Inflow
EX POND 010 OUTLET	Pond Outlet	Outflow	0.292	24.000	0.65	SWMF 010	Pond Outflow
EX POND 010 OUTLET	Pond Outlet	Link	0.292	24.000	0.65		
EX POND 010 OUTLET	Pond Outlet	Downstream	0.292	24.000	0.65	0-13	
SWMF 001 OUTLET	Pond Outlet	Upstream	0.755	16.000	1.06	SWMF 001	Pond Inflow
SWMF 001 OUTLET	Pond Outlet	Outflow	0.019	24.000	0.02	SWMF 001	Pond Outflow
SWMF 001 OUTLET	Pond Outlet	Link	0.019	24.000	0.02		
SWMF 001 OUTLET	Pond Outlet	Downstream	0.337	18.050	0.48	0-1	
SWMF 002 OUTLET	Pond Outlet	Upstream	3.458	16.050	4.96	SWMF 002	Pond Inflow
SWMF 002 OUTLET	Pond Outlet	Outflow	3.116	17.300	4.27	SWMF 002	Pond Outflow
SWMF 002 OUTLET	Pond Outlet	Link	3.116	17.300	4.27		
SWMF 002 OUTLET	Pond Outlet	Downstream	5.280	17.000	6.57	EX NOKIA 012	
SWMF 003 OUTLET	Pond Outlet	Upstream	4.266	16.000	5.97	SWMF 003	Pond Inflow
SWMF 003 OUTLET	Pond Outlet	Outflow	1.655	18.600	1.75	SWMF 003	Pond Outflow
SWMF 003 OUTLET	Pond Outlet	Link	1.648	18.600	1.75		
SWMF 003 OUTLET	Pond Outlet	Downstream	5.280	17.000	6.57	EX NOKIA 012	
SWMF 005 TO SWMF 006	Pond Outlet	Upstream	2.253	16.050	3.43	SWMF 005	Pond Inflow
SWMF 005 TO SWMF 006	Pond Outlet	Outflow	1.327	16.900	2.02	SWMF 005	Pond Outflow
SWMF 005 TO SWMF 006	Negative Flow	Outflow	0.000	5.400	0.00	SWMF 005	Pond Outflow
SWMF 005 TO SWMF 006	Pond Outlet	Link	1.327	16.900	2.02		

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
SWMF 005 TO SWMF 006	Negative Flow	Link	0.000	5.400	0.00		
SWMF 005 TO SWMF 006	Pond Outlet	Downstream	1.960	16.050	2.85	SWMF 006	
SWMF 006 OUTLET	Pond Outlet	Upstream	1.960	16.050	2.85	SWMF 006	Pond Inflow
SWMF 006 OUTLET	Pond Outlet	Outflow	0.424	24.000	0.51	SWMF 006	Pond Outflow
SWMF 006 OUTLET	Pond Outlet	Link	0.424	24.000	0.51		
SWMF 006 OUTLET	Pond Outlet	Downstream	0.424	24.000	0.51	0-7	
SWMF 007 OUTLET	Pond Outlet	Upstream	0.417	16.000	0.58	SWMF 007	Pond Inflow
SWMF 007 OUTLET	Pond Outlet	Outflow	0.318	17.500	0.46	SWMF 007	Pond Outflow
SWMF 007 OUTLET	Pond Outlet	Link	0.318	17.500	0.46		
SWMF 007 OUTLET	Pond Outlet	Downstream	0.337	18.050	0.48	O-1	
SWMF 010 TO SWMF 006	Pond Outlet	Upstream	1.960	16.050	2.85	SWMF 006	Pond Inflow
SWMF 010 TO SWMF 006	Pond Outlet	Outflow	0.424	24.000	0.51	SWMF 006	Pond Outflow
SWMF 010 TO SWMF 006	Pond Outlet	Link	0.000	0.000	0.00		
SWMF 010 TO SWMF 006	Pond Outlet	Downstream	4.155	16.100	6.21	SWMF 010	

Messages

Message Id	69
Scenario	100Yr 24Hr
Element Type	Pond
Element Id	44
Label	SWMF 006
Time	(N/A)
Message	The pond has a diversion with both interconnected and level pool outlet structures. It is recommended that you use either all interconnected or all level pool outlet structures with a diversion from a pond.

Warning

Source

Table of Contents

UPDATED 100YR 12HR-48HR 001	Time-Depth Curve, 100 years	1
002	Unit Hydrograph Summary, 100 years	2
	Unit Hydrograph Summary, 100 years	4
003	Unit Hydrograph Summary, 100 years	6
004	Unit Hydrograph Summary, 100 years	8
005	Unit Hydrograph Summary, 100 years	10
006	Unit Hydrograph Summary, 100 years	12
007	Unit Hydrograph Summary, 100 years	14
008	Unit Hydrograph Summary, 100 years	16
010	Unit Hydrograph Summary, 100 years	18
011	Unit Hydrograph Summary, 100 years	20
EX NOKIA 012	Elevation vs. Volume Curve, 100 years	22
SWMF 001	Elevation vs. Volume Curve, 100 years	23
SWMF 002		
SWMF 003	Elevation vs. Volume Curve, 100 years	24
SWMF 005	Elevation vs. Volume Curve, 100 years	25
SWMF 006	Elevation vs. Volume Curve, 100 years	26
SWMF 007	Elevation vs. Volume Curve, 100 years	27

Table of Contents

	Elevation vs. Volume Curve, 100 years	28
SWMF 010		
	Elevation vs. Volume Curve, 100 years	29
EX NOKIA TEMP OUTLET		
	Outlet Input Data, 100 years	30
EX POND 010 OUTLET		
	Outlet Input Data, 100 years	32
SWMF 001 OUTLET		
	Outlet Input Data, 100 years	34
SWMF 002 OUTLET		
	Outlet Input Data, 100 years	36
SWMF 003 OUTLET		
	Outlet Input Data, 100 years	38
SWMF 005 TO SWMF 006		
	Outlet Input Data, 100 years	40
SWMF 006 OUTLET		
	Outlet Input Data, 100 years	42
SWMF 007 OUTLET		
	Outlet Input Data, 100 years	44
SWMF 010 to SWMF 006		
	Outlet Input Data, 100 years	46

Subsection: Time-Depth Curve Return Event: 100 years Label: UPDATED 100YR 12HR-48HR Storm Event: 100YR-24HR

Time-Depth Curve:	100YR-24HR
Label	100YR-24HR
Start Time	0.000 hours
Increment	1.000 hours
End Time	24.000 hours
Return Event	100 years

CUMULATIVE RAINFALL (in) Output Time Increment = 1.000 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.2	0.4	0.6	0.8
5.000	1.0	1.2	1.4	1.7	2.0
10.000	2.3	2.7	3.1	3.8	4.5
15.000	5.2	6.0	6.7	7.3	7.7
20.000	8.0	8.2	8.3	8.4	8.6

Label: 001 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	24.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.250 hours
Area (User Defined)	4.200 acres
Computational Time Increment	0.033 hours
Time to Peak (Computed)	16.000 hours
Flow (Peak, Computed)	3.11 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	3.11 ft³/s
Drainage Area	
SCS CN (Composite)	88.500
Area (User Defined)	4.200 acres
Maximum Retention (Pervious)	1.3 in
Maximum Retention (Pervious, 20 percent)	0.3 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	7.2 in
Runoff Volume (Pervious)	2.515 ac-ft
Hydrograph Volume (Area und	ler Hydrograph curve)
Volume	2.507 ac-ft
SCS Unit Hydrograph Parame	ters
Time of Concentration (Composite)	0.250 hours
Computational Time Increment	0.033 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	19.04 ft ³ /s
Unit peak time, Tp	0.167 hours

Label: 001 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	0.667 hours
Total unit time, Tb	0.833 hours

Label: 002 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	24.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.340 hours
Area (User Defined)	20.380 acres
Computational Time Increment	0.045 hours
Time to Peak (Computed)	16.003 hours
Flow (Peak, Computed)	14.93 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	14.93 ft³/s
Drainage Area	
SCS CN (Composite)	87.100
Area (User Defined)	20.380 acres
Maximum Retention (Pervious)	1.5 in
Maximum Retention (Pervious, 20 percent)	0.3 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	7.0 in
Runoff Volume (Pervious)	11.918 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	11.863 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.340 hours
Computational Time Increment	0.045 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	67.92 ft ³ /s
Unit peak time, Tp	0.227 hours
Pantley Systems Inc	Haestad Methods Solution

Label: 002 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	0.907 hours
Total unit time, Tb	1.133 hours

Subsection: Unit Hydrograph Summary Return Event: 100 years Label: 003 Storm Event: 100YR-24HR

Storm Event 100 YR-24HR Return Event 100 years Duration 24.000 hours Depth 8.6 in Time of Concentration (Composite) 0.330 hours Area (User Defined) 23.570 acres Computational Time Increment 0.044 hours Flow (Peak, Computed) 17.45 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 16.000 hours Flow (Peak Interpolated Output) 23.570 acres Drainage Area SCS CN (Composite) 88.700 Area (User Defined) 23.570 acres Maximum Retention (Pervious) 1.3 in Maximum Retention (Pervious, 20 percent) 0.3 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 7.2 in Runoff Volume (Pervious) 14.163 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.330 hours (Computational Time Increment 0.044 hours Increment 0.044 hours Increment 0.0749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 80.93 ft³/s Unit peak time, Tp 0.220 hours		
Duration 24.000 hours Depth 8.6 in Time of Concentration (Composite) 23.570 acres Computational Time Increment 0.044 hours ITime to Peak (Computed) 15.972 hours Flow (Peak, Computed) 17.45 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 16.000 hours ITIME (User Defined) 17.45 ft³/s Output Increment 16.000 hours ITIME (User Defined) 17.45 ft³/s Output) 17.45 ft³/s Output) 17.45 ft³/s Output) 17.45 ft³/s Output Increment 16.000 hours ITIME (User Defined) 17.45 ft³/s Output) 1	Storm Event	100YR-24HR
Depth 8.6 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (U	Return Event	100 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) SCS CN (Composite) Area (User Defined) Aximum Retention (Pervious) Aximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 80.93 ft³/s	Duration	24.000 hours
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Interpolated Output) Flow (Peak Interpolated Output) Interpolated Output) Flow (Peak Interpolated Output) In	Depth	8.6 in
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 80.93 ft³/s		0.330 hours
Increment Time to Peak (Computed) Flow (Peak, Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 17.45 ft³/s 16.000 hours 16.000 hours 17.45 ft³/s 10.000 hours 17.45 ft³/s	Area (User Defined)	23.570 acres
Increment Time to Peak (Computed) Flow (Peak, Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 17.45 ft³/s 16.000 hours 16.000 hours 17.45 ft³/s 10.000 hours 17.45 ft³/s		
Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Runoff Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 80.93 ft³/s		0.044 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) 17.45 ft³/s Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) T.2 in Hydrograph Volume (Area under Hydrograph curve) Volume 14.163 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 80.93 ft³/s	Time to Peak (Computed)	15.972 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) T.2 in Hydrograph Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 80.93 ft³/s	Flow (Peak, Computed)	17.45 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 14.163 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 80.93 ft³/s	Output Increment	0.050 hours
Drainage Area SCS CN (Composite) 88.700 Area (User Defined) 23.570 acres Maximum Retention (Pervious) 1.3 in Maximum Retention (Pervious, 20 percent) 0.3 in Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 14.163 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 80.93 ft³/s		16.000 hours
SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) This in Total in Tota		17.45 ft³/s
Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 14.163 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 80.93 ft³/s	Drainage Area	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 1.3 in 1.3 in 0.3 in 1.4.16 1.5 in 1.6 in 1.6 in 1.3 in 1.4 in 1.5 a in 1.4 100 ac in 14.163 ac-ft 14.163 ac-ft 14.100 ac-ft 15.100 16.100 17.200 17.	SCS CN (Composite)	88.700
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) This is a c-ft Hydrograph Volume (Area under Hydrograph curve) Volume Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 80.93 ft³/s	Area (User Defined)	23.570 acres
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Hydrograph Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 0.33 In 0.34 In 0.34 In 0.44 In 0.34 In 0.35 In 0.35 In 0.36 In 0.37 In 0.37 In 0.38 In 0.38 In 0.38 In 0.38 In 0.48 In 0.4		1.3 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Hydrograph Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 7.2 in 7.2 i		0.3 in
Runoff Volume (Pervious) Runoff Volume (Pervious) 14.163 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time 1 0.044 hours Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 80.93 ft³/s	Cumulative Runoff	
Runoff Volume (Pervious) Hydrograph Volume (Area under Hydrograph curve) Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 14.100 ac-ft 14.100 ac-ft 14.100 ac-ft 48.330 hours 0.330 hours 483.432 483.432 883.432 883.432 883.432 883.432 883.432		7.2 in
Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.330 hours Computational Time 10.044 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 80.93 ft³/s	` '	14.163 ac-ft
Volume 14.100 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.330 hours Computational Time 1.0044 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 80.93 ft³/s	Hydrograph Volume (Area und	der Hydrograph curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 0.330 hours 0.044 hours 483.432 483.432 5 1.670 1.670 80.93 ft ³ /s		
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp U.330 nours 0.044 hours 483.432 483.432 1.670 80.93 ft³/s	SCS Unit Hydrograph Parame	eters
Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 0.044 hours 483.432 483.432 1.670 80.93 ft ³ /s		0.330 hours
Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 80.93 ft ³ /s	Computational Time	0.044 hours
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 80.93 ft ³ /s	, , , ,	483.432
Unit peak, qp 80.93 ft ³ /s		0.749
Unit peak, qp 80.93 ft ³ /s	Receding/Rising, Tr/Tp	1.670
• • •	5. 5	
		•

Label: 003 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	0.880 hours
Total unit time, Tb	1.100 hours

Label: 004 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	24.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	2.280 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	16.000 hours
Flow (Peak, Computed)	1.67 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	1.67 ft ³ /s
Drainage Area	
SCS CN (Composite)	86.500
Area (User Defined)	2.280 acres
Maximum Retention (Pervious)	1.6 in
Maximum Retention (Pervious, 20 percent)	0.3 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	6.9 in
Runoff Volume (Pervious)	1.320 ac-ft
Hydrograph Volume (Area under	Hydrograph curve)
Volume	1.318 ac-ft
SCS Unit Hydrograph Parameter	rs
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0,749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	31.00 ft ³ /s
Unit peak time, Tp	0.056 hours
one peak anie, 1p	0.000 110013

Label: 004 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Label: 005 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	24.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.380 hours
Area (User Defined)	5.140 acres
Computational Time Increment	0.051 hours
Time to Peak (Computed)	16.011 hours
Flow (Peak, Computed)	3.75 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	3.75 ft ³ /s
Drainage Area	
SCS CN (Composite)	86.500
Area (User Defined)	5.140 acres
Maximum Retention (Pervious)	1.6 in
Maximum Retention (Pervious, 20 percent)	0.3 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	6.9 in
Runoff Volume (Pervious)	2.975 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	2.959 ac-ft
Volume	2.7J7 dC-1L
SCS Unit Hydrograph Paramete	rs
Time of Concentration (Composite)	0.380 hours
Computational Time Increment	0.051 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	15.33 ft ³ /s
Unit peak time, Tp	0.253 hours
Death Oaten Lee	Harris A.M. Barta O.L. Car

Label: 005 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	1.013 hours
Total unit time, Tb	1.267 hours

Label: 006 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	24.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.270 hours
Area (User Defined)	3.180 acres
Computational Time Increment	0.036 hours
Time to Peak (Computed)	15.984 hours
Flow (Peak, Computed)	2.39 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	2.39 ft ³ /s
Drainage Area	
SCS CN (Composite)	91.100
Area (User Defined)	3.180 acres
Maximum Retention	
(Pervious)	1.0 in
Maximum Retention	0.2 in
(Pervious, 20 percent)	V.= III
Cumulative Runoff	
Cumulative Runoff Depth	7 € :∽
(Pervious)	7.5 in
Runoff Volume (Pervious)	1.987 ac-ft
Hydrograph Volume (Area unde	er Hydrograph curve)
Volume	1.981 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.270 hours
Computational Time Increment	0.036 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	13.34 ft ³ /s
Unit peak time, Tp	0.180 hours
Doubles Or store to	Lineared Matheway College

Label: 006 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	0.720 hours
Total unit time, Tb	0.900 hours

Label: 007 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	24.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.250 hours
Area (User Defined)	2.280 acres
Computational Time Increment	0.033 hours
Time to Peak (Computed)	16.000 hours
Flow (Peak, Computed)	1.69 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	1.69 ft³/s
Drainage Area	
SCS CN (Composite)	88.900
Area (User Defined)	2.280 acres
Maximum Retention (Pervious)	1.2 in
Maximum Retention (Pervious, 20 percent)	0.2 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	7.2 in
Runoff Volume (Pervious)	1.375 ac-ft
Hydrograph Volume (Area und	er Hydrograph curve)
Volume	1.370 ac-ft
SCS Unit Hydrograph Paramet	ers
Time of Concentration (Composite)	0.250 hours
Computational Time Increment	0.033 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	10.33 ft ³ /s
Unit peak time, Tp	0.167 hours

Label: 007 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	0.667 hours
Total unit time, Tb	0.833 hours

Label: 008 Storm Event: 100YR-24HR

Storm Event	100YR-24HR
Return Event	100 years
Duration	24.000 hours
Depth	8.6 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.680 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	16.000 hours
Flow (Peak, Computed)	0.51 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	16.000 hours
Flow (Peak Interpolated Output)	0.51 ft³/s
Drainage Area	
SCS CN (Composite)	90.000
Area (User Defined)	0.680 acres
Maximum Retention (Pervious)	1.1 in
Maximum Retention (Pervious, 20 percent)	0.2 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	7.4 in
Runoff Volume (Pervious)	0.417 ac-ft
Hydrograph Volume (Area und	der Hydrograph curve)
Volume	0.417 ac-ft
SCS Unit Hydrograph Parame	ters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	9.25 ft ³ /s
Unit peak time, Tp	0.056 hours

Label: 008 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Label: 010 Storm Event: 100YR-24HR

Storm Event	100YR-24HR	
Return Event	100 years	
Duration	24.000 hours	
Depth	8.6 in	
Time of Concentration (Composite)	0.470 hours	
Area (User Defined)	28.170 acres	
Computational Time Increment	0.063 hours	
Time to Peak (Computed)	16.043 hours	
Flow (Peak, Computed)	20.08 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	16.050 hours	
Flow (Peak Interpolated Output)	20.08 ft ³ /s	
Drainage Area		
SCS CN (Composite)	83.800	
Area (User Defined)	28.170 acres	
Maximum Retention (Pervious)	1.9 in	
Maximum Retention (Pervious, 20 percent)	0.4 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	6.6 in	
Runoff Volume (Pervious)	15.540 ac-ft	
Lludrograph Volume (Area undo	r Hudrograph ourse)	
Hydrograph Volume (Area unde		
Volume	15.436 ac-ft	
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	0.470 hours	
Computational Time Increment	0.063 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	67.91 ft ³ /s	
Unit peak time, Tp	0.313 hours	
, , ,	Haastad Mathada Salutian	

Label: 010 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	1.253 hours
Total unit time, Tb	1.567 hours

Subsection: Unit Hydrograph Summary Return Event: 100 years Label: 011 Storm Event: 100YR-24HR

Storm Event	100YR-24HR	
Return Event	100 years	
Duration	24.000 hours	
Depth	8.6 in	
Time of Concentration (Composite)	0.250 hours	
Area (User Defined)	11.200 acres	
Computational Time Increment	0.033 hours	
Time to Peak (Computed)	16.000 hours	
Flow (Peak, Computed)	7.72 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	16.000 hours	
Flow (Peak Interpolated Output)	7.72 ft³/s	
Drainage Area		
SCS CN (Composite)	80.000	
Area (User Defined)	11.200 acres	
Maximum Retention (Pervious)	2.5 in	
Maximum Retention (Pervious, 20 percent)	0.5 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	6.2 in	
Runoff Volume (Pervious)	5.751 ac-ft	
Hydrograph Volume (Area und	der Hydrograph curve)	
Volume	5.729 ac-ft	
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	0.250 hours	
Computational Time Increment	0.033 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	50.76 ft ³ /s	
Unit peak time, Tp	0.167 hours	

Label: 011 Storm Event: 100YR-24HR

SCS Unit Hydrograph Parameters	
Unit receding limb, Tr	0.667 hours
Total unit time, Tb	0.833 hours

Subsection: Elevation vs. Volume Curve Return Event: 100 years

Label: EX NOKIA 012 Storm Event: 100YR-24HR

Elevation-Volume

Pond Elevation (ft)	Pond Volume (ac-ft)
730.00	0.000
731.00	1.465
732.00	3.207
733.00	5.323
734.00	7.821
735.00	10.711
735.90	13.673
736.00	14.033
736.50	15.934

Subsection: Elevation vs. Volume Curve Return Event: 100 years

Label: SWMF 001 Storm Event: 100YR-24HR

Elevation-Volume

Pond Elevation (ft)	Pond Volume (ac-ft)
737.50	0.000
738.00	0.503
739.00	1.804
739.50	2.611
740.00	3.514
741.00	5.593

Subsection: Elevation vs. Volume Curve Return Event: 100 years

Label: SWMF 002 Storm Event: 100YR-24HR

Elevation-Volume

Pond Elevation (ft)	Pond Volume (ac-ft)
732.00	0.000
733.00	0.509
734.00	1.128
735.00	1.865
736.00	2.729
737.00	3.728
738.00	4.870
739.00	6.136

Subsection: Elevation vs. Volume Curve

Return Event: 100 years

Label: SWMF 003

Storm Event: 100YR-24HR

Pond Elevation (ft)	Pond Volume (ac-ft)
732.00	0.000
733.00	1.167
734.00	2.625
735.00	4.386
736.00	6.463
737.00	8.868
738.00	11.611
739.00	14.704

Label: SWMF 005 Storm Event: 100YR-24HR

Pond Elevation (ft)	Pond Volume (ac-ft)
729.00	0.000
730.00	0.207
731.00	0.476
732.00	0.814
733.00	1.250
734.00	1.846
735.00	2.637
736.00	3.626
737.00	4.825

Label: SWMF 006 Storm Event: 100YR-24HR

Pond Elevation (ft)	Pond Volume (ac-ft)
729.00	0.000
730.00	0.384
731.00	0.843
732.00	1.383
733.00	2.010
734.00	2.725
735.00	3.529
736.00	4.416
737.00	5.386

Label: SWMF 007 Storm Event: 100YR-24HR

Pond Elevation (ft)	Pond Volume (ac-ft)
739.00	0.000
739.50	0.175
740.00	0.384
741.00	0.906

Label: SWMF 010 Storm Event: 100YR-24HR

Pond Elevation	Pond Volume (ac-ft)
(ft)	(ac-it)
726.87	0.000
727.00	0.130
728.00	1.186
729.00	2.342
730.00	3.601
731.00	4.985
732.00	6.506
733.00	8.163
734.00	9.977
735.00	11.962
736.00	14.167
736.39	15.090
737.00	16.627

Subsection: Outlet Input Data Return Event: 100 years Label: EX NOKIA TEMP OUTLET Storm Event: 100YR-24HR

Requested Pond Water Surface Elevations		
Minimum (Headwater)	730.00 ft	
Increment (Headwater)	0.10 ft	
Maximum (Headwater)	736.50 ft	

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward + Reverse	TW	730.00	736.50
Rectangular Weir	Weir - 1	Forward + Reverse	TW	735.90	736.50
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years
Label: EX NOKIA TEMP OUTLET Storm Event: 100YR-24HR

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	730.00 ft
Orifice Diameter	9.0 in
Orifice Coefficient	0.600
Structure ID: Weir - 1 Structure Type: Rectangular Weir	
	1
Structure Type: Rectangular Weir	1 735.90 ft
Structure Type: Rectangular Weir Number of Openings	-

Subsection: Outlet Input Data Return Event: 100 years
Label: EX POND 010 OUTLET Storm Event: 100YR-24HR

Requested Pond Water Surface Elevations		
Minimum (Headwater)	726.87 ft	
Increment (Headwater)	0.10 ft	
Maximum (Headwater)	737.00 ft	

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward + Reverse	TW	726.88	737.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years
Label: EX POND 010 OUTLET Storm Event: 100YR-24HR

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	726.67 ft
Orifice Diameter	5.3 in
Orifice Coefficient	0.600

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 001 OUTLET Storm Event: 100YR-24HR

Requested Pond Water Surface Elevations		
Minimum (Headwater)	737.50 ft	
Increment (Headwater)	0.10 ft	
Maximum (Headwater)	741.00 ft	

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward	TW	737.50	741.00
Rectangular Weir	Weir - 1	Forward	TW	740.00	741.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 001 OUTLET Storm Event: 100YR-24HR

Structure ID: Orifice - 1 Structure Type: Orifice-Circular				
Number of Openings	1			
Elevation	737.50 ft			
Orifice Diameter	1.0 in			
Orifice Coefficient	0.600			
Structure ID: Weir - 1				
Structure Type: Rectangular We	eir			
Number of Openings	1			
Elevation	740.00 ft			
Weir Length	40.00 ft			
Weir Coefficient	3.00 (ft^0.5)/s			
Structure ID: TW Structure Type: TW Setup, DS	Channal			
3	Channel			
Tailwater Type	Free Outfall			
Tailwater Type				
Tailwater Type				
Tailwater Type Convergence Tolerances	Free Outfall			
Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance	Free Outfall 30			
Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance	Free Outfall 30 0.01 ft			
Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance	30 0.01 ft 0.50 ft			
Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum) Headwater Tolerance	30 0.01 ft 0.50 ft 0.01 ft			

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 002 OUTLET Storm Event: 100YR-24HR

Requested Pond Water Surface Elevations				
Minimum (Headwater)	732.00 ft			
Increment (Headwater)	0.10 ft			
Maximum (Headwater)	739.00 ft			

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward + Reverse	TW	732.01	739.00
Rectangular Wei	r Weir - 1	Forward + Reverse	TW	738.00	739.00
Tailwater Setting	s Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 002 OUTLET Storm Event: 100YR-24HR

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	731.80 ft
Orifice Diameter	13.0 in
Orifice Coefficient	0.600
Structure ID: Weir - 1 Structure Type: Rectangular Weir	
	1
Structure Type: Rectangular Weir	1 738.00 ft
Structure Type: Rectangular Weir Number of Openings	-

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 003 OUTLET Storm Event: 100YR-24HR

Requested Pond Water Surface Elevations				
Minimum (Headwater)	732.00 ft			
Increment (Headwater)	0.10 ft			
Maximum (Headwater)	739.00 ft			

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward + Reverse	TW	732.01	739.00
Rectangular Weir	Weir - 1	Forward + Reverse	TW	738.00	739.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 003 OUTLET Storm Event: 100YR-24HR

Structure ID: Orifice - 1	
Structure Type: Orifice-Circular	
Number of Openings	1
Number of Openings	1
Elevation	731.80 ft
Orifice Diameter	7.0 in
Orifice Coefficient	0.600
Structure ID: Weir - 1	
Structure ID: Weir - 1 Structure Type: Rectangular Weir	
Structure Type: Rectangular Weir	1
0	1
Structure Type: Rectangular Weir	1 738.00 ft
Structure Type: Rectangular Weir Number of Openings	-

Subsection: Outlet Input Data Return Event: 100 years
Label: SWMF 005 TO SWMF 006 Storm Event: 100YR-24HR

Requested Pond Water Surface Elevations			
Minimum (Headwater)	729.00 ft		
Increment (Headwater)	0.10 ft		
Maximum (Headwater)	737.00 ft		

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Culvert-Circular	Culvert - 1	Forward + Reverse	TW	729.00	737.00
Rectangular Weir	Weir - 1	Forward + Reverse	TW	736.00	737.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 005 TO SWMF 006 Storm Event: 100YR-24HR

Structure ID: Weir - 1 Structure Type: Rectangular Weir	
Number of Openings	1
Elevation	736.00 ft
Weir Length	40.00 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	24.0 in
Length	330.00 ft
Length (Computed Barrel)	330.00 ft
Slope (Computed)	0.000 ft/ft
Outlet Control Date	
Outlet Control Data	
Manning's n	0.013
Ke	0.200
Kb	0.012
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0045
М	2.0000
С	0.0317
Υ	0.6900
T1 ratio (HW/D)	1.095
T2 ratio (HW/D)	1.197
Slope Correction Factor	-0.500

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	731.19 ft	T1 Flow	15.55 ft³/s
T2 Elevation	731.39 ft	T2 Flow	17.77 ft³/s

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 006 OUTLET Storm Event: 100YR-24HR

Requested Pond Water Surface	e Elevations
Minimum (Headwater)	729.00 ft
Increment (Headwater)	0.10 ft
Maximum (Headwater)	737.00 ft

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward	TW	729.01	737.00
Irregular Weir	Weir - 1	Forward	TW	736.39	737.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 006 OUTLET Storm Event: 100YR-24HR

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	728.50 ft
Orifice Diameter	3.4 in
Orifice Coefficient	0.600

Structure ID: Weir - 1 Structure Type: Irregular Weir

Station (ft)	Elevation (ft)
0.00	737.00
48.90	736.70
92.90	736.39
98.90	736.55
145.30	736.88
168.70	737.00

Lowest Elevation 736.39 ft
Weir Coefficient 3.00 (ft^0.5)/s

Subsection: Outlet Input Data Return Event: 100 years
Label: SWMF 007 OUTLET Storm Event: 100YR-24HR

Requested Pond Water Surface	e Elevations
Minimum (Headwater)	739.00 ft
Increment (Headwater)	0.10 ft
Maximum (Headwater)	741.00 ft

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward	TW	739.00	741.00
Rectangular Weir	Weir - 1	Forward	TW	740.50	741.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 007 OUTLET Storm Event: 100YR-24HR

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	739.00 ft
Orifice Diameter	7.0 in
Orifice Coefficient	0.600
Structure ID: Weir - 1 Structure Type: Rectangular Weir	
Number of Openings	1
Elevation	740.50 ft
Weir Length	20.00 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: TW	
Structure Type: TW Setup, DS Ch	
Structure Type: TW Setup, DS Ch Tailwater Type	nannel Free Outfall
Tailwater Type	
Tailwater Type Convergence Tolerances	Free Outfall
Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance	Free Outfall 30
Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance	Free Outfall 30 0.01 ft
Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance	30 0.01 ft 0.50 ft
Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum) Headwater Tolerance	30 0.01 ft 0.50 ft 0.01 ft

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 010 to SWMF 006 Storm Event: 100YR-24HR

Requested Pond Water Surface	e Elevations
Minimum (Headwater)	729.00 ft
Increment (Headwater)	0.10 ft
Maximum (Headwater)	737.00 ft

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Irregular Weir	Weir - 1	Forward + Reverse	TW	732.70	737.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 100 years Label: SWMF 010 to SWMF 006 Storm Event: 100YR-24HR

Structure ID: Weir - 1 Structure Type: Irregular Weir

Station (ft)	Elevation (ft)
0.00	737.00
1.00	736.00
2.00	735.00
7.00	734.00
14.00	733.00
59.00	732.70
93.00	733.00
160.00	734.00
198.00	735.00
211.00	736.00
220.00	737.00

Index

٠	ITIUCX
	0
	001 (Unit Hydrograph Summary, 100 years)2, 3
	002 (Unit Hydrograph Summary, 100 years)4, 5
	003 (Unit Hydrograph Summary, 100 years)6, 7
	004 (Unit Hydrograph Summary, 100 years)8, 9
	005 (Unit Hydrograph Summary, 100 years)10, 11
	006 (Unit Hydrograph Summary, 100 years)12, 13
	007 (Unit Hydrograph Summary, 100 years)14, 15
	008 (Unit Hydrograph Summary, 100 years)16, 17
	010 (Unit Hydrograph Summary, 100 years)18, 19
	011 (Unit Hydrograph Summary, 100 years)20, 21
	E
	EX NOKIA 012 (Elevation vs. Volume Curve, 100 years)22
	EX NOKIA TEMP OUTLET (Outlet Input Data, 100 years)30, 31
	EX POND 010 OUTLET (Outlet Input Data, 100 years)32, 33
	S
	SWMF 001 (Elevation vs. Volume Curve, 100 years)23
	SWMF 001 OUTLET (Outlet Input Data, 100 years)34, 35
	SWMF 002 (Elevation vs. Volume Curve, 100 years)24
	SWMF 002 OUTLET (Outlet Input Data, 100 years)36, 37
	SWMF 003 (Elevation vs. Volume Curve, 100 years)25
	SWMF 003 OUTLET (Outlet Input Data, 100 years)38, 39
	SWMF 005 (Elevation vs. Volume Curve, 100 years)26
	SWMF 005 TO SWMF 006 (Outlet Input Data, 100 years)40, 41
	SWMF 006 (Elevation vs. Volume Curve, 100 years)27
	SWMF 006 OUTLET (Outlet Input Data, 100 years)42, 43
	SWMF 007 (Elevation vs. Volume Curve, 100 years)28
	SWMF 007 OUTLET (Outlet Input Data, 100 years)44, 45
	SWMF 010 (Elevation vs. Volume Curve, 100 years)29

SWMF 010 to SWMF 006 (Outlet Input Data, 100 years)...46, 47

U

UPDATED 100YR 12HR-48HR (Time-Depth Curve, 100 years)...1

TAB 4

WETLAND ASSESSMENT

EXHIBIT 4A

WETLAND DELINEATION & ASSESSMENT REPORT BY V3 COMPANIES OF ILLINOIS, LTD. (UNDER SEPARATE COVER)

ELECTRONIC COPIES OF PONDPACK MODELS