

625 Forest Edge Drive, Vernon Hills, IL 60061

Tel 847.478.9700 ■ Fax 847.478.9701

www.gha-engineers.com

To: Bruce Mellen

DR Horton, Inc.

From: Bill Grieve, P.E., PTOE

Senior Transportation Engineer

Justin Opitz

Transportation Planner

Date: May 15, 2018

Subject: Naperville Polo Club

Part I. Introduction and Project Context

Gewalt Hamilton Associates, Inc. (GHA) has conducted a Traffic Impact Study (TIS) for the proposed residential development located along the north side of 119th Street at Book Road in Naperville, Illinois. The site is currently used for recreation, including soccer and polo.

As proposed, the residential development will include age-targeted single-family homes and townhomes and non-age targeted townhomes and apartments, totaling 723 dwellings. The following provides a summary of existing conditions, site traffic characteristics, and the analyses conducted of the development's impact on the surrounding roadway network. *Exhibits* and *Appendices* referenced are located at the end of this document.

Part II. Background Information

Site Location Map and Roadway Inventory

Exhibit 1 provides an aerial location map of the site vicinity. Exhibit 2 provides a photo inventory of current traffic operations. Pertinent comments to the adjacent roadways include:

119th Street

- 119th Street is an east-west minor arterial roadway under the jurisdiction of the Wheatland Township Road Commission. It provides one travel lane in each direction.
- 119th Street is classified as a "Minor Arterial" on the Illinois Department of Transportation (IDOT) Functional Classification Map.
- In the westbound direction, the posted speed limit is 45 miles per hour (mph) east of the DuPage River and then increases to 50 mph in the site vicinity until approximately 500 feet east of an existing parking lot access drive, where it becomes 35 mph. In the eastbound direction, the posted speed limit is 35 mph just east of IL 59 and in the site vicinity until approximately 2,000 west of Book Road where it becomes 50 mph. The speed limit returns to 45 mph once east of the DuPage River.

Book Road

- Book Road is currently shown as a Minor Arterial on the City of Naperville Master Thoroughfare Plan. It intersects 119th Street at the east end of the site and currently dead-ends north of 119th Street.
- One unstriped travel lane is provided in each direction. The Book Road approaches at 119th Street have Stop control.
- Book Road continues north of 111th Street and is also classified as a Minor Arterial route by the City; however, it is classified as a Major Collector on the IDOT Functional Classification Map. It has a three-lane pavement section.

<u>Discussion Point.</u> There are two projects anticipated on Book Road. The first is the vacation of the road from 119th Street to 127th Street in the Village of Plainfield. The second is the relocation and construction from 119th Street to 111th Street in the City of Naperville.

Wolf Drive

- Wolf Drive is a local street that has its northern terminus at 119th Street.
- It has one travel lane in each direction and has Stop control at 119th Street.

Existing Traffic

GHA conducted weekday morning and evening peak period traffic counts on Thursday, October 12, 2017. *Exhibit 3* summarizes the peak hour traffic volumes, which occurred from 7:15-8:15 AM and 5:00-6:00 PM, as well as the Average Daily Traffic (ADT) 24-hour volumes that were obtained from the IDOT web-site. Summaries of the existing traffic counts can be found in *Appendix A*. No unusual activities (e.g. roadway construction, or inclement weather) were observed during our counts that would be expected to impact traffic volumes or travel patterns in the site vicinity.

<u>Discussion Point.</u> The traffic counts for the 119th Street and Wolf Drive intersection were used as the "base" volumes, because Book Road south of 119th Street is to be vacated.

Part III. Project Traffic Characteristics

Site Plan

Attached as *Exhibit 4* is the site plan for the Polo Club prepared by Gary R. Weber Associates, Inc. As proposed, the development consists of constructing 723 residential units:

- 95 single family homes that are age-targeted.
- 93 townhomes that are age-targeted.
- 78, 2-story townhomes.
- 148, 3-story townhomes.
- 309 apartment units

The Polo Club access system will include:

- A street intersection (Hawkweed Drive) for the homes and townhomes on relocated Book Road.
- A street intersection (Polo Club Drive) on 119th Street for the homes and townhomes.
- A street connection to the north for the homes and townhomes at Hawkweed Drive.
- A full access for the apartments located on 119th Street, opposite Wolf Drive.
- A limited access (right turns in/out only) for the apartments at the west end of the site on 119th Street.

Traffic Generations and Trip Distribution

Exhibit 5 - Part A tabulates the traffic generation calculations for the proposed development. Traffic generations are based on historically observed trip rate data published by the Institute of Transportation Engineers (ITE) in the most recent, 10^{th} Edition of the manual *Trip Generation*. The pertinent trip generation pages for the various residential land uses are included as *Appendix B*.

<u>Discussion Point.</u> Even though many of the dwellings will be "age-targeted", the standard higher generation rates for single and multi-family dwellings were used. The actual traffic generations for the age-targeted area may be 25-35% lower than calculated in *Exhibit 5 – Part A*. This will help ensure that maximum potential site traffic impacts are tested.

Exhibit 5 – Part B presents the anticipated trip distribution, which is primarily based on the expected vehicle patterns, the street system characteristics, as well as the proposed access system.

Site and Total Traffic Assignments

Exhibit 6 illustrates the Site Traffic assignment during the weekday morning and weekday evening peak hours, which is based on the traffic characteristics summarized in Exhibit 5 (traffic generations and trip distribution) and assigned to the area roadways.

Typical industry practice suggests that other area development growth be considered to project volumes to test for an analysis horizon that is "build-out + 5-years". CMAP was contacted for their Year 2040 traffic projections. Build-out is expected to be completed in 2020. Thus, the future analysis horizon becomes the Year 2025.

Site traffic and the existing volumes (see *Exhibits 6 and 3, respectively*) were combined, adjusted for the CMAP projected 10% growth on 119th Street to produce the Year 2025 Total Traffic assignment, which is presented in *Exhibit 7*.

<u>Discussion Point.</u> The traffic assignments assume that Book Road will be vacated south of 119th Street and will be relocated and constructed north of 119th Street through the site to meet Wild Timothy Road in the neighborhood to the north.

Part IV. Traffic Evaluation and Recommendations

Intersection Capacity Analyses

Intersection capacity analyses were conducted using the Highway Capacity Software (HCS) and results are shown in *Exhibit 8*. The analysis parameters are listed in Part A, as published in the Transportation Research Board's (TRB) *Highway Capacity Manual* – 6th *Edition*, 2016 (HCM). At signalized intersections, Level of Service (LOS) "reports" traffic operations using the letter designations "A" (best) through "F" (worst). LOS reports operations based on the average control delay per vehicle in seconds. At unsignalized intersections where the minor approaches have stop control, the HCS measurement is approach delay in seconds.

LOS C is often referred to as the intersection "design" guideline and LOS D is typically considered as providing the lower threshold of "acceptable" operations. LOS E and F are usually considered "unacceptable". The results are summarized in *Exhibit 8 and the HCS* summary printouts are provided in *Appendix C*.

<u>Discussion Point.</u> The capacity analyses results indicate that the study area intersections and approaches will operate at acceptable levels of service (LOS D or better) for the Year 2025 analysis horizon, with exception of the southbound left turn movement exiting the apartments, opposite Wolf Drive, during the weekday evening peak hour that will operate near the LOS D / LOS E threshold.

Roadway and Site Access Operations

119th Street

- The preliminary engineering plans prepared by CEMCON indicate that 119th Street will be widened
 to a 3-lane pavement section along the site, then taper back to a 2-lane section east of Book Road
 (relocated).
- The road design will include curb and gutter. Per the IDOT BDE Manual, roads with curb and gutter should have a maximum posted speed limit of 45-mph.
- As the Polo Club development becomes built-out, a speed study should be conducted along 119th Street to determine if the posted limit can be reduced even further.

Book Road (Relocated)

- The CEMCON plans indicate that Book Road (relocated) will be constructed as a 3-lane pavement section with curb and gutter from 119th Street north through the site to Wild Timothy Road.
- The posted speed limit on Book Road north of 111th Street is 40-mph. Prior to completing the stretch
 of road, between Wild Timothy Road and 111th Street, it may be appropriate to initially post a slower
 speed limit.

119th Street @ Book Road (Relocated)

- A separate eastbound left turn lane is to be provided.
- Two southbound lanes, striped for separate left and right turns, should be provided.
- Book Road should have Stop control.

Book Road @ Hawkweed Drive

- The site access may have a landscape median separating the inbound and outbound lanes.
- Exiting site traffic should have Stop control.

119th Street @ Polo Club Drive

- A separate eastbound left turn lane is to be provided.
- Two southbound lanes are to be provided and striped for separate left and right turns.
- A landscaped median may separate the inbound and outbound lanes.
- Southbound street traffic should have Stop control.

Polo Club Drive @ Hawkweed Drive

- One travel lane should be provided on all four intersection approaches.
- All-way Stop control should be considered at this on-site intersection.
- Other Polo Club streets should have Stop control at Polo Club Drive and Hawkweed Drive.

119th Street @ Wolf Drive / Apartment Access

- Separate eastbound and westbound left turn lanes are to be provided.
- Two southbound access lanes are to be provided. They should be striped for a shared left / through lane and a separate right turn lane, to best align with the Wolf Drive approach.
- Exiting apartment traffic should have Stop control.

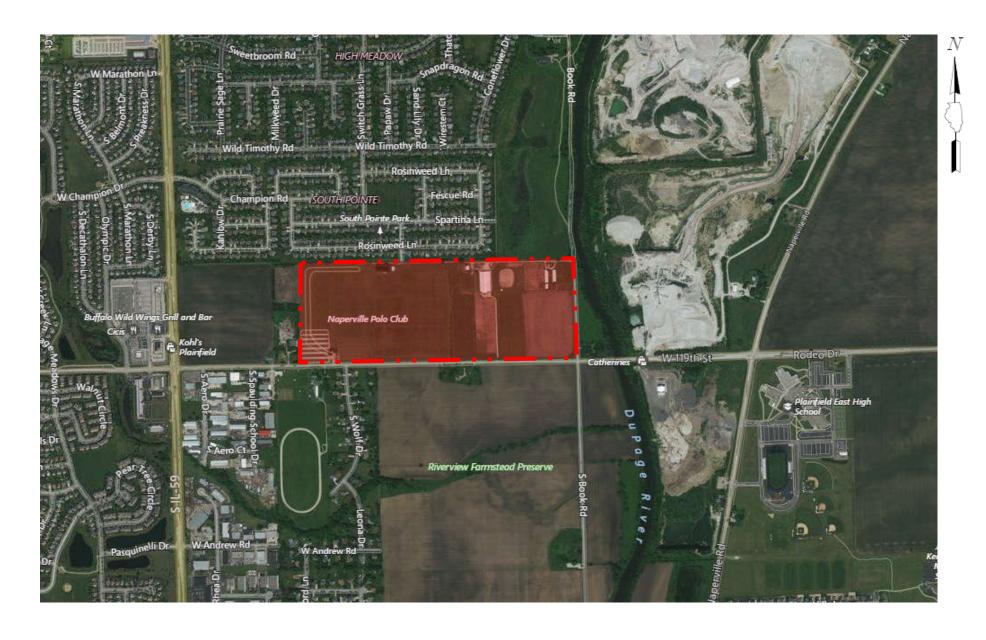
119th Street @ Western Apartment Access

- One inbound and one outbound lane should be provided.
- To help physically and visually demonstrate that access is limited to right turns in/out only, a channeling island should be provided between the inbound and outbound lanes.
- Exiting apartment traffic should have Stop control.

Part V. Technical Addendum

The following *Exhibits* and *Appendices* were previously referenced. They provide technical support for our observations, findings and recommendations discussed in the text.

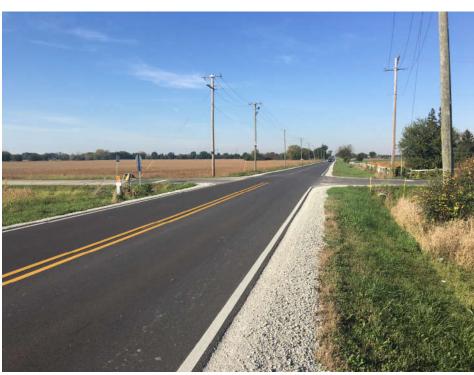
Exhibits


- 1. Aerial Location Map
- 2. Photo Inventory
- 3. Existing Traffic
- 4. Site Plan
- 5. Traffic Characteristics
- 6. Site Traffic
- 7. Total Traffic Year 2025
- 8. Intersection Capacity Analyses

Appendices

- A. Traffic Count Summaries
- B. ITE Trip Generation Manual 10th Edition Land Use Excerpts
- C. Capacity Analyses Printouts

EXHIBITS



Proposed Residential Development - Unincorporated Will County, Illinois

Looking south along Book Rd at 119th St

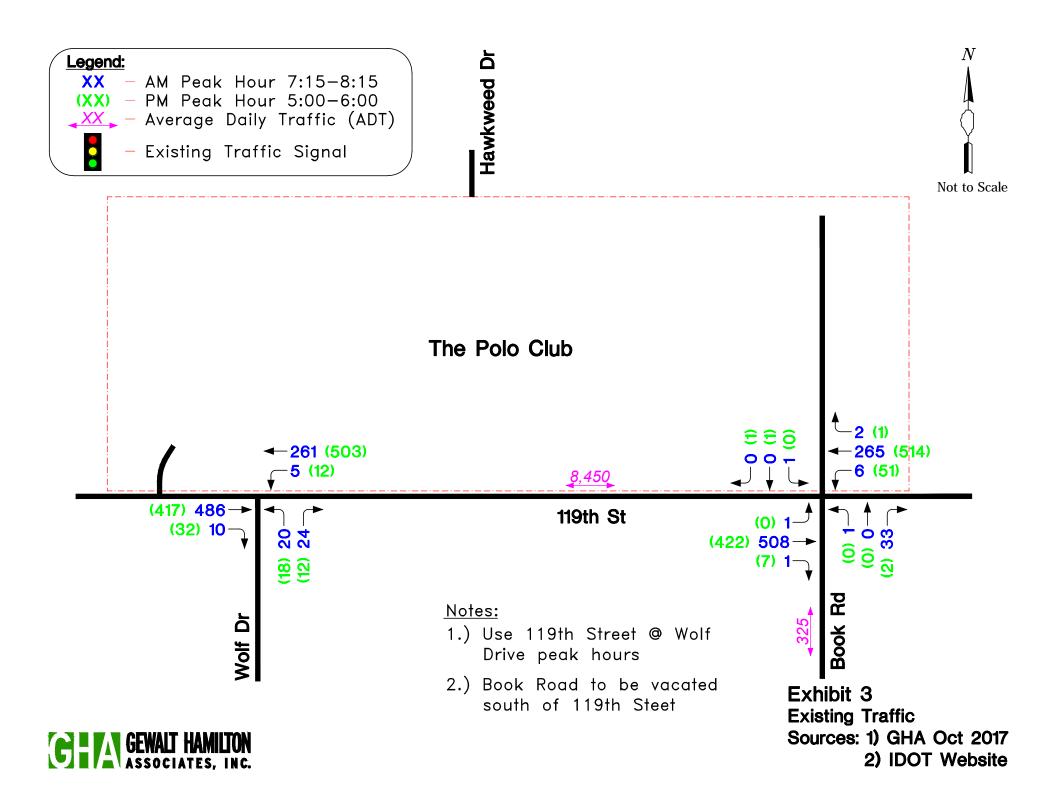
Looking west along 119th St at Book Rd

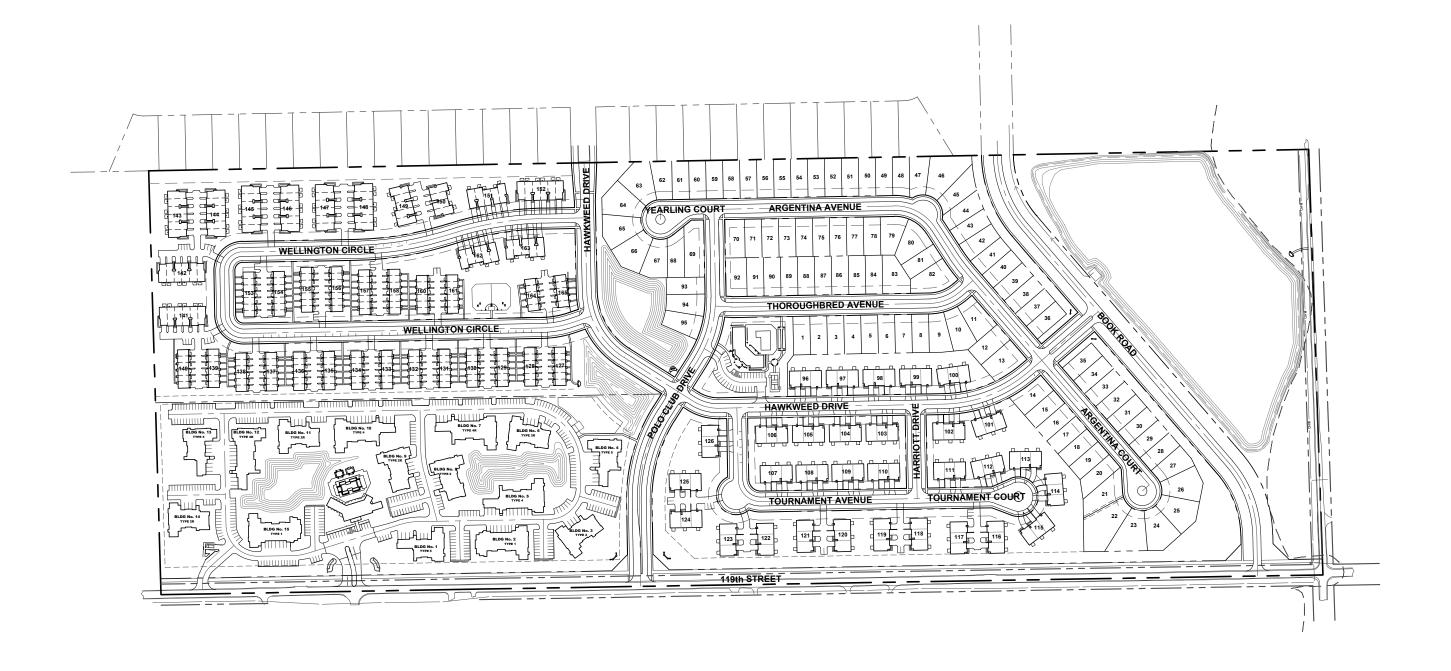
Looking north along Book Rd at 119th St

Looking east along 119th St at Book Rd

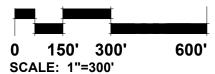
Looking north along Wolf Dr at 119th St

Looking east along 119th St at Wolf Dr




Looking west along 119th St at Wolf Dr

Looking south along Wolf Dr from 119th St


Looking west from Book Rd at Site

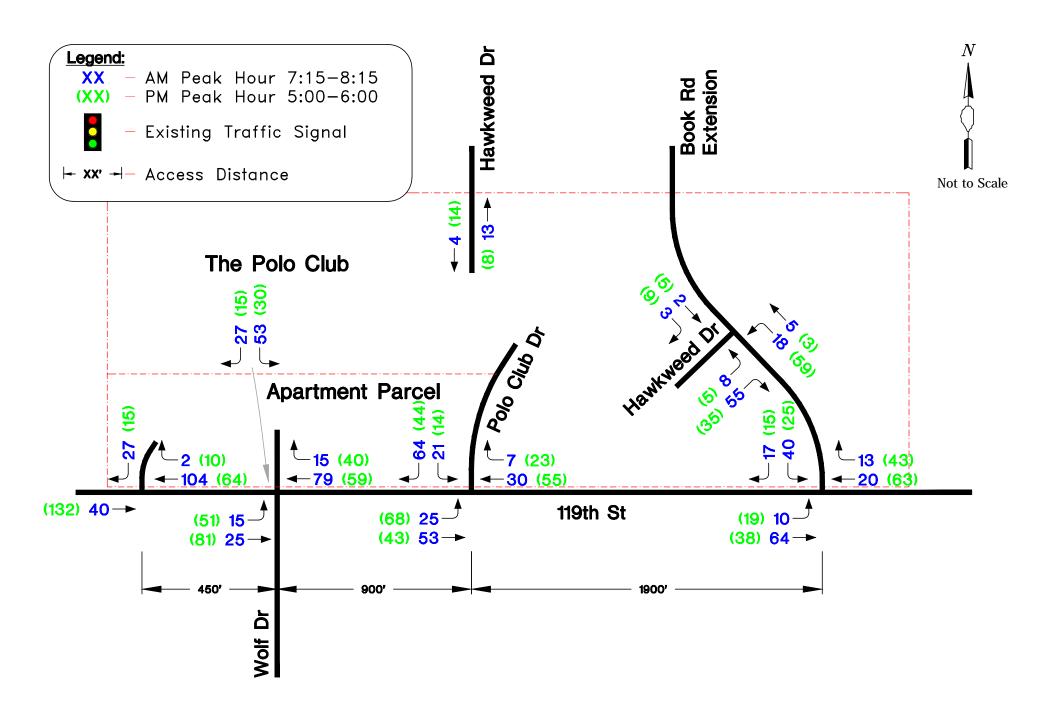
LAND USE	UNITS
SINGLE FAMILY DETACHED	95
SINGLE FAMILY ATTACHED	319
MULTI-FAMILY	309
TOTAL	723

Exhibit 5 Project Traffic Characteristics

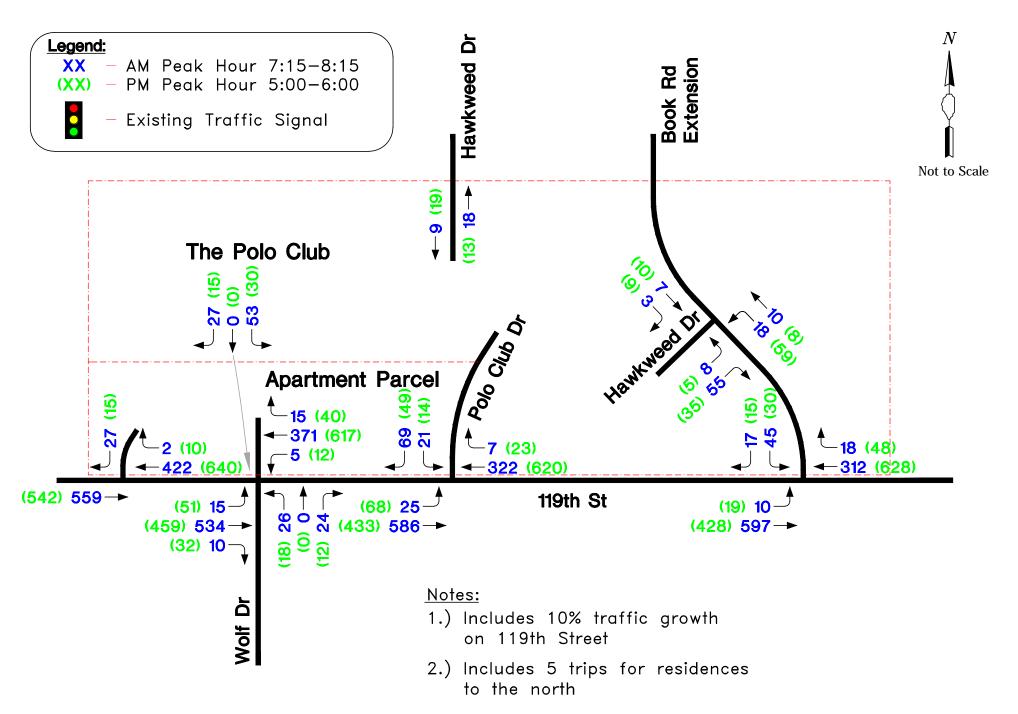
Polo Club Subdivision - Naperville, IL.

Part A. Traffic Generation Calculations

		ITE		Morning	9		Evening	3	Daily
	Size	Code	ln	Out	Sum	<u>In</u>	Out	Sum	Sum
Age Targeted									
Single Family	95 Dwellings	#210	18	54	72	61	36	97	990
Townhomes	93 Dwellings; 2-story	#220	10	34	44	35	20	55	662
Non-Age Targeted									
Buckingham Townhomes	78 Dwellings; 2-story	#220	9	29	38	30	17	47	548
Seaboard Townhomes	148 Dwellings; 3-story	#221	13	37	50	39	25	64	804
	Sub	totals =	50	154	204	165	98	263	3,004
Apartments	309 Units	#220	32	107	139	101	60	161	2,296
	Т	otals =	82	261	343	266	158	424	5,300


Notes:

- 1) Source: Institute of Transportation Engineers (ITE) Trip Generation Manual (10th Edition).
- 2) No trip discounts taken for age-targeted residences. The actual generations may be 25-35% lower.
- 3) Assumes Book Road constructed from 119th Street north to Wild Timothy Road.


Part B. Trip Distribution

	Percent Use
Route & Direction	To/From Site
119th Street	
 East of Book Road 	40%
 West of Wolf Drive 	50%
Hawkweed Drive	
- North of Site	5%
Wolf Drive	
- South of 119th Street	Negligible
Book Road	
- North of Site	5%
- South of 119th Street	To be vacated
Totals =	100%

Exhibit 8 Intersection Capacity Analyses

Polo Club - Naperville, Illinois

Part A. Parameters - Type of Traffic Control (Source: 2016 Highway Capacity Manual)

I. Traffic Signals II. Stop Sign

LOS	Delay (sec / veh)	<u>Description</u>	LOS	Delay (sec / veh)
Α	≤ 10	All signal phases clear waiting vehicles without delay	Α	≤ 10
В	>10 and ≤ 20	Minimal delay experienced on select signal phases	В	>10 and ≤ 15
C	>20 and ≤ 35	Some delay experienced on several phases; often used as design criteria	С	>15 and ≤ 25
D	>35 and ≤ 55	Usually considered as the acceptable delay standard	D	>25 and ≤ 35
E	>55 and ≤ 80	Very long delays experienced during the peak hours	E	>35 and ≤ 50
F	>80	Unacceptable delays experienced throughout the peak hours	F	>50

Part B. Res

Port P. Booulto		LOS Per Movement Group By Approach														
Part B. Results	Traffic Control & Roadway	TF		- = N	lon Ci	> : ritical	= Sha or no	red La	ane wed l	Move	nent			Intersection Approach		
	Conditions	Ea	ıstboı	ınd	We	estbou	und	No	rthbo	und	Sou	uthbo	und	Delay (sec / veh)	LOS	
1. 119th Street @ Book Road	SB Stops	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	SB Approach	Delay	
A. Weekday Morning Peak Hour Total Traffic - Year 2025 (see <i>Exhibit 7</i>) B. Weekday Evening Peak Hour	As Planned	A	-	-	•	-	-	•	-	-	С	-	В	18.9	O	
Total Traffic	As Planned	A	-	-	-	-	-	-	-	-	D	-	В	22.7	С	
2. 119th Street @ Polo Club Dr.	SB Stops	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	SB Approach	Delay	
A. Weekday Morning Peak Hour Total Traffic B. Weekday Evening Peak Hour	As Planned	A	-	-	-	-	-	•	-	-	С	-	В	13.3	В	
Total Traffic	As Planned	A	-	-	-	-	-	-	-	-	D	-	В	17.6	С	
3. 119th Street @ Wolf Dr. / Apartments	NB/SB Stops	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	SB Approach	Delay	
A. Weekday Morning Peak Hour Total Traffic B. Weekday Evening Peak Hour Total Traffic	As Planned	A	-	-	A	-	-	>	C	<	D	<	В	24.9	С	
Total Traffic	 As Planned 	Α	-	-	Α	-	-	>	D	<	Е	•	В	36.1	Е	

APPENDIX A *Existing Traffic Count Summaries*

Vernon Hills, Illinois, United States 60061 (847) 478-9700 jopitz@gha-engineers.com

Count Name: W 119th St & Book Rd Site Code: Start Date: 10/12/2017 Page No: 1

Turning Movement Data

	l		Dools Dal		ĺ						iciti Di	ata	Dools Del					110th Ct			ĺ
			Book Rd					119th St	1				Book Rd					119th St			1
Start Time	District		Southbound		A T-1-1	District	Th	Westbound		A T-1-1	District	Th	Northbound		A T-1-1	Dist	Th	Eastbound		A T-1-1	las Tasal
	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
6:00 AM	0	0	0	0	0	0	24	0	0	24	1	0	1	0	2	1	80	0	0	81	107
6:15 AM	0	0	0	0	0	0	45	0	0	45	0	0	0	0	0	0	80	0	0	80	125
6:30 AM	0	0	0	0	0	0	45	0	0	45	3	0	1	0	4	0	127	0	0	127	176
6:45 AM	0	0	0	. 0	0	0	63	3	0	66	11	0	0	. 0	. 11	1	128	0	0	129	206
Hourly Total	0	0	0	0	0	0	177	3	0	180	15	0	2	0	17	2	415	0	0	417	614
7:00 AM	0	0	0	0	0	0	46	2	0	48	12	0	1	0	13	0	120	0	0	120	181
7:15 AM	0	0	0	0	0	1	61	1	. 0	63	7	0	0	. 0	. 7	0	147	. 0	0	147	217
7:30 AM	0	0	1	0	1	1	64	0	0	65	3	0	0	0	3	0	149	1	0	150	219
7:45 AM	0	0	0	0	0	0	69	0	0	69	3	0	1	0	4	0	111	0	0	111	184
Hourly Total	0	0	1	0	. 1	2	240	. 3	0	245	25	0	2	. 0	27	0	527	1	0	528	801
8:00 AM	0	0	0	0	0	0	73	0	0	73	3	0	0	0	3	0	117	1	0	118	194
8:15 AM	0	0	0	0	0	0	50	0	0	50	1	0	1	0	2	1	84	0	0	85	137
8:30 AM	0	0	0	0	0	0	72	1	0	73	0	0	0	0	0	1	95	0	0	96	169
8:45 AM	0	1	0	0	1	0	55	0	0	55	0	0	1	0	1	0	62	0	0	62	119
Hourly Total	0	1	0	0	1	0	250	1	0	251	4	0	2	0	6	2	358	1	0	361	619
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3:00 PM	0	0	0	0	0	0	108	0	0	108	1	0	1	0	2	1	64	0	0	65	175
3:15 PM	1	0	1	0	2	0	107	4	0	111	2	0	2	0	4	0	64	1	0	65	182
3:30 PM	0	0	0	0	0	0	112	3	0	115	0	0	2	0	2	1	83	1	0	85	202
3:45 PM	0	0	0	0	0	1	124	3	0	128	1	0	2	0	3	1	93	0	0	94	225
Hourly Total	1	0	1	0	2	1	451	10	0	462	4	0	7	0	11	3	304	2	0	309	784
4:00 PM	0	1	0	0	1	0	167	9	0	176	1	0	3	0	4	3	67	0	0	70	251
4:15 PM	0	0	0	0	0	0	143	7	0	150	1	0	2	0	3	5	84	0	0	89	242
4:30 PM	0	0	0	0	0	0	107	10	0	117	0	1	1	0	2	6	92	0	0	98	217
4:45 PM	1	0	1	0	2	0	111	13	0	124	0	0	1	0	1	1	72	2	0	75	202
Hourly Total	1	1	1	0	3	0	528	39	0	567	2	1	7	0	10	15	315		0	332	912
5:00 PM	0	0	0	0	0	1	138	7	0	146	0	0	0	0	0	1	88	0	0	89	235
5:15 PM	0	1	0	0	1	0	144	16	0	160	1	0	0	0	1	0	89	0	0	89	251
5:30 PM	1	0	0		1	0	112	13	0	125	0	0	0	0	0	4	113	0	0	117	243
5:45 PM	0	0	0	0	0	0	123	15	0	138	1	0	0	0	1	2	115	0	0	117	256
Hourly Total	1	1	0	0	2	1	517	51	0	569	2	0	0	0	2	7	405	0	0	412	985
Grand Total	3	3	3	0	9	4	2163	107	0	2274	52	1	20	0	73	29	2324	6	0	2359	4715
Approach %	33.3	33.3	33.3	0.0	-	0.2	95.1	4.7	0.0	- 2217	71.2	1.4	27.4	0.0	- 13	1.2	98.5	0.3	0.0	- 2000	-
Total %	0.1	0.1	0.1	0.0	0.2	0.2	45.9	2.3	0.0	48.2	1.1	0.0	0.4	0.0	1.5	0.6	49.3	0.3	0.0	50.0	
	3	3	3	0.0	9	4	2111	106	-	-	51	1	19	0.0	71	29	2269	5	0.0	-	
Lights									0	2221					-			-		2303	4604
% Lights	100.0	100.0	100.0	-	100.0	100.0	97.6	99.1	-	97.7	98.1	100.0	95.0	-	97.3	100.0	97.6	83.3	-	97.6	97.6
Mediums	0	0	0	0	0	0	50	1	0	51	1	0	1	. 0	2	0	48	0	0	48	101
% Mediums	0.0	0.0	0.0	-	0.0	0.0	2.3	0.9		2.2	1.9	0.0	5.0	-	2.7	0.0	2.1	0.0	-	2.0	2.1
Articulated Trucks	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	7	0	0	7	9
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	0.1	0.0		0.1	0.0	0.0	0.0	-	0.0	0.0	0.3	0.0	-	0.3	0.2
Bicycles on Road	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1

% Bicycles on Road 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 0.0

Vernon Hills, Illinois, United States 60061 (847) 478-9700 jopitz@gha-engineers.com

Count Name: W 119th St & Book Rd Site Code: Start Date: 10/12/2017 Page No: 4

Turning Movement Peak Hour Data (6:45 AM)

	i				1			,				('	1						
			Book Rd					119th St					Book Rd					119th St			
Start Time			Southbound	I				Westbound					Northbound					Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
6:45 AM	0	0	0	0	0	0	63	3	0	66	11	0	0	0	11	1	128	0	0	129	206
7:00 AM	0	0	0	0	0	0	46	2	0	48	12	0	1	0	13	0	120	0	0	120	181
7:15 AM	0	0	0	0	0	1	61	1	0	63	7	0	0	0	7	0	147	0	0	147	217
7:30 AM	0	0	1	0	1	1	64	0	0	65	3	0	0	0	3	0	149	1	0	150	219
Total	0	0	1	0	1	2	234	6	0	242	33	0	1	0	34	1	544	1	0	546	823
Approach %	0.0	0.0	100.0	0.0	-	0.8	96.7	2.5	0.0	-	97.1	0.0	2.9	0.0	-	0.2	99.6	0.2	0.0	-	-
Total %	0.0	0.0	0.1	0.0	0.1	0.2	28.4	0.7	0.0	29.4	4.0	0.0	0.1	0.0	4.1	0.1	66.1	0.1	0.0	66.3	-
PHF	0.000	0.000	0.250	0.000	0.250	0.500	0.914	0.500	0.000	0.917	0.688	0.000	0.250	0.000	0.654	0.250	0.913	0.250	0.000	0.910	0.939
Lights	0	0	1	0	1	2	219	5	0	226	32	0	1	0	33	1	526	1	0	528	788
% Lights	-	-	100.0	-	100.0	100.0	93.6	83.3	-	93.4	97.0	-	100.0	-	97.1	100.0	96.7	100.0	-	96.7	95.7
Mediums	0	0	0	0	0	0	14	1	0	15	1	0	0	0	1	0	16	0	0	16	32
% Mediums	-	-	0.0	-	0.0	0.0	6.0	16.7	-	6.2	3.0	-	0.0	-	2.9	0.0	2.9	0.0	-	2.9	3.9
Articulated Trucks	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	3
% Articulated Trucks	-	-	0.0	-	0.0	0.0	0.4	0.0	-	0.4	0.0	-	0.0	-	0.0	0.0	0.4	0.0	-	0.4	0.4
Bicycles on Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycles on Road	-	-	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	-	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0

Vernon Hills, Illinois, United States 60061 (847) 478-9700 jopitz@gha-engineers.com

Count Name: W 119th St & Book Rd Site Code: Start Date: 10/12/2017 Page No: 6

Turning Movement Peak Hour Data (5:00 PM)

	i							,						- /							i .
			Book Rd					119th St					Book Rd					119th St			
Ota et Tiera			Southbound	I				Westbound					Northbound					Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
5:00 PM	0	0	0	0	0	1	138	7	0	146	0	0	0	0	0	1	88	0	0	89	235
5:15 PM	0	1	0	0	1	0	144	16	0	160	1	0	0	0	1	0	89	0	0	89	251
5:30 PM	1	0	0	0	1	0	112	13	0	125	0	0	0	0	0	4	113	0	0	117	243
5:45 PM	0	0	0	0	0	0	123	15	0	138	1	0	0	0	1	2	115	0	0	117	256
Total	1	1	0	0	2	1	517	51	0	569	2	0	0	0	2	7	405	0	0	412	985
Approach %	50.0	50.0	0.0	0.0	-	0.2	90.9	9.0	0.0	-	100.0	0.0	0.0	0.0	-	1.7	98.3	0.0	0.0	-	-
Total %	0.1	0.1	0.0	0.0	0.2	0.1	52.5	5.2	0.0	57.8	0.2	0.0	0.0	0.0	0.2	0.7	41.1	0.0	0.0	41.8	-
PHF	0.250	0.250	0.000	0.000	0.500	0.250	0.898	0.797	0.000	0.889	0.500	0.000	0.000	0.000	0.500	0.438	0.880	0.000	0.000	0.880	0.962
Lights	1	1	0	0	2	1	514	51	0	566	2	0	0	0	2	7	402	0	0	409	979
% Lights	100.0	100.0	-	-	100.0	100.0	99.4	100.0	-	99.5	100.0	-	-	-	100.0	100.0	99.3	-	-	99.3	99.4
Mediums	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	2	0	0	2	5
% Mediums	0.0	0.0	-	-	0.0	0.0	0.6	0.0	-	0.5	0.0	-	-	-	0.0	0.0	0.5	-	-	0.5	0.5
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
% Articulated Trucks	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	0.0	0.0	-	-	-	0.0	0.0	0.2	-	-	0.2	0.1
Bicycles on Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	0.0	0.0	-	-	-	0.0	0.0	0.0	-	-	0.0	0.0

Vernon Hills, Illinois, United States 60061 (847) 478-9700 jopitz@gha-engineers.com

Count Name: W 119th St & S Wolf Dr Site Code: Start Date: 10/12/2017 Page No: 1

Turning Movement Data

	i			i	ıumınç	j woveme			İ				l
		119	th St			Wo	olf Dr			119	9th St		
Start Time		West	bound			North	bound			East	bound		
	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
6:00 AM	27	. 0	. 0	27	6	3	0	9	1	. 74	0	75	111
6:15 AM	41	1	0	42	0	5	0	5	1	81	0	82	129
6:30 AM	46	1	0	47	6	3	0	9	0	130	0	130	186
6:45 AM	58	0	0	58	10	5	0	15	0	116	0	116	189
Hourly Total	172	2	0	174	22	16	0	38	2	401	0	403	615
7:00 AM	57	0	0	57	3	6	0	9	0	126	0	126	192
7:15 AM	55	1	0	56	2	7	0	9	3	135	0	138	203
7:30 AM	63	1	0	64	9	5	0	14	1	138	0	139	217
7:45 AM	69	3	0	72	4	3	0	7	2	107	0	109	188
Hourly Total	244	5	0	249	18	21	0	39	6	506	0	512	800
8:00 AM	74	0	0	74	9	5	0	14	4	106	0	110	198
8:15 AM	46	2	0	48	3	3	0	6	5	87	0	92	146
8:30 AM	72	1	0	73	3	3	0	6	2	87	0	89	168
8:45 AM	55	1	0	56	2	8	0	10	5	65	0	70	136
Hourly Total	247	4	0	251	17	19	0	36	16	345	0	361	648
*** BREAK ***	-	_	_	-	-	_	_	-	-	_	<u>-</u>	_	-
3:00 PM	99	2	0	101	1	5	0	6	3	71	0	74	181
3:15 PM	107	3	0	110	0	7	0	7	4	63	0	67	184
3:30 PM	116	4	0	120	2	3	0	5	9	85	0	94	219
3:45 PM	118	3	0	121	2	5	0	7	7	87	0	94	222
Hourly Total	440	12	0	452	5	20	0	25	23	306	0	329	806
4:00 PM	149	9	0	158	1	4	0	5	8	74	0	82	245
4:15 PM	110	9	0	119	9	2	0	11	5	75	0	80	210
4:30 PM	131	7	1	139	3	2	0	5	4	87	0	91	235
4:45 PM	115	1	0	116	3	4	0	7	6	72	0	78	201
Hourly Total	505	26	1	532	16	12	0	28	23	308	0	331	891
5:00 PM	130	4	0	134	4	5	0	9	8	85	0	93	236
5:15 PM	141	4	0	145	2	7	0	9	8	100	0	108	262
5:30 PM	114	3	2	119	5	1	0	6	8	114	1	123	248
5:45 PM	118	1	1	120	1	5	0	6	8	118	0	126	252
Hourly Total	503	12	3	518	12	18	0	30	32	417	1	450	998
Grand Total	2111	61	4	2176	90	106	0	196	102	2283	1	2386	4758
Approach %	97.0	2.8	0.2	-	45.9	54.1	0.0	-	4.3	95.7	0.0	-	-
Total %	44.4	1.3	0.1	45.7	1.9	2.2	0.0	4.1	2.1	48.0	0.0	50.1	-
Lights	2067	56	4	2127	84	100	0	184	93	2234	1	2328	4639
% Lights	97.9	91.8	100.0	97.7	93.3	94.3	-	93.9	91.2	97.9	100.0	97.6	97.5
Mediums	37	4	0	41	5	6	0	11	9	43	0	52	104
% Mediums	1.8	6.6	0.0	1.9	5.6	5.7	-	5.6	8.8	1.9	0.0	2.2	2.2
Articulated Trucks	7	1	0	8	1	0	0	1	0	5	0	5	14
% Articulated Trucks	0.3	1.6	0.0	0.4	1.1	0.0	-	0.5	0.0	0.2	0.0	0.2	0.3
Bicycles on Road	0	0	0	0	0	0	0	0	0	1	0	1	1

% Bicycles on Road	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Vernon Hills, Illinois, United States 60061 (847) 478-9700 jopitz@gha-engineers.com

Count Name: W 119th St & S Wolf Dr Site Code: Start Date: 10/12/2017 Page No: 4

Turning Movement Peak Hour Data (7:15 AM)

	i			i dirining i	VIOVCITICI	it i can i ic	on Data (7.10 / (IVI)					1
		119	th St			Wo	lf Dr			119	th St		
Start Time	Westbound			Northbound			Eastbound						
	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
7:15 AM	55	1	0	56	2	7	0	9	3	135	0	138	203
7:30 AM	63	1	0	64	9	5	0	14	1	138	0	139	217
7:45 AM	69	3	0	72	4	3	0	7	2	107	0	109	188
8:00 AM	74	0	0	74	9	5	0	14	4	106	0	110	198
Total	261	5	0	266	24	20	0	44	10	486	0	496	806
Approach %	98.1	1.9	0.0	-	54.5	45.5	0.0	-	2.0	98.0	0.0	-	-
Total %	32.4	0.6	0.0	33.0	3.0	2.5	0.0	5.5	1.2	60.3	0.0	61.5	-
PHF	0.882	0.417	0.000	0.899	0.667	0.714	0.000	0.786	0.625	0.880	0.000	0.892	0.929
Lights	251	4	0	255	22	17	0	39	6	478	0	484	778
% Lights	96.2	80.0	-	95.9	91.7	85.0	-	88.6	60.0	98.4	-	97.6	96.5
Mediums	8	1	0	9	1	3	0	4	4	8	0	12	25
% Mediums	3.1	20.0	-	3.4	4.2	15.0	-	9.1	40.0	1.6	-	2.4	3.1
Articulated Trucks	2	0	0	2	1	0	0	1	0	0	0	0	3
% Articulated Trucks	0.8	0.0	<u>-</u>	0.8	4.2	0.0	-	2.3	0.0	0.0	-	0.0	0.4
Bicycles on Road	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycles on Road	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0

Vernon Hills, Illinois, United States 60061 (847) 478-9700 jopitz@gha-engineers.com

Count Name: W 119th St & S Wolf Dr Site Code: Start Date: 10/12/2017 Page No: 6

Turning Movement Peak Hour Data (5:00 PM)

				running	inionemen	it i can i it	Jui Dala (3.00 i ivi <i>j</i>					
		119	9th St			Wo	lf Dr			119	th St		
Start Time	Westbound			Northbound			Eastbound						
	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
5:00 PM	130	4	0	134	4	5	0	9	8	85	0	93	236
5:15 PM	141	4	0	145	2	7	0	9	8	100	0	108	262
5:30 PM	114	3	2	119	5	1	0	6	8	114	1	123	248
5:45 PM	118	1	1	120	1	5	0	6	8	118	0	126	252
Total	503	12	3	518	12	18	0	30	32	417	1	450	998
Approach %	97.1	2.3	0.6	-	40.0	60.0	0.0	-	7.1	92.7	0.2	-	-
Total %	50.4	1.2	0.3	51.9	1.2	1.8	0.0	3.0	3.2	41.8	0.1	45.1	-
PHF	0.892	0.750	0.375	0.893	0.600	0.643	0.000	0.833	1.000	0.883	0.250	0.893	0.952
Lights	498	12	3	513	12	18	0	30	32	414	1	447	990
% Lights	99.0	100.0	100.0	99.0	100.0	100.0	<u>-</u>	100.0	100.0	99.3	100.0	99.3	99.2
Mediums	5	0	0	5	0	0	0	0	0	3	0	3	8
% Mediums	1.0	0.0	0.0	1.0	0.0	0.0	-	0.0	0.0	0.7	0.0	0.7	0.8
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0
% Articulated Trucks	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0
Bicycles on Road	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycles on Road	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0

APPENDIX B

ITE Trip Generation Excerpts – 10th Edition

Land Use: 210 Single-Family Detached Housing

Description

Single-family detached housing includes all single-family detached homes on individual lots. A typical site surveyed is a suburban subdivision.

Additional Data

The number of vehicles and residents had a high correlation with average weekday vehicle trip ends. The use of these variables was limited, however, because the number of vehicles and residents was often difficult to obtain or predict. The number of dwelling units was generally used as the independent variable of choice because it was usually readily available, easy to project, and had a high correlation with average weekday vehicle trip ends.

This land use included data from a wide variety of units with different sizes, price ranges, locations, and ages. Consequently, there was a wide variation in trips generated within this category. Other factors, such as geographic location and type of adjacent and nearby development, may also have had an effect on the site trip generation.

Single-family detached units had the highest trip generation rate per dwelling unit of all residential uses because they were the largest units in size and had more residents and more vehicles per unit than other residential land uses; they were generally located farther away from shopping centers, employment areas, and other trip attractors than other residential land uses; and they generally had fewer alternative modes of transportation available because they were typically not as concentrated as other residential land uses.

Time-of-day distribution data for this land use are presented in Appendix A. For the six general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:15 and 8:15 a.m. and 4:00 and 5:00 p.m., respectively. For the two sites with Saturday data, the overall highest vehicle volume was counted between 3:00 and 4:00 p.m. For the one site with Sunday data, the overall highest vehicle volume was counted between 10:15 and 11:15 a.m.

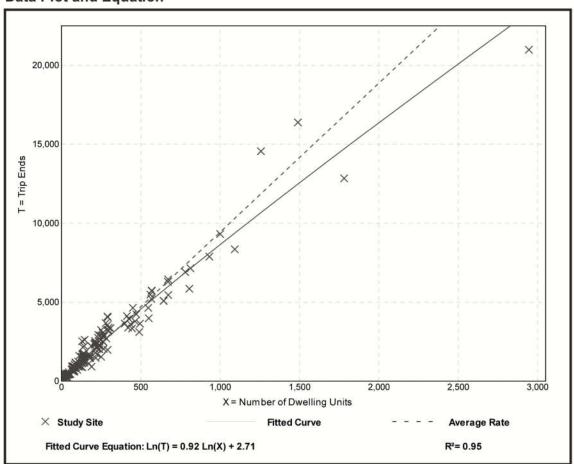
The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in California, Connecticut, Delaware, Illinois, Indiana, Maryland, Minnesota, Montana, New Jersey, North Carolina, Ohio, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Vermont, and Virginia.

Source Numbers

100, 105, 114, 126, 157, 167, 177, 197, 207, 211, 217, 267, 275, 293, 300, 319, 320, 356, 357, 367, 384, 387, 407, 435, 522, 550, 552, 579, 598, 601, 603, 614, 637, 711, 716, 720, 728, 735, 868, 903, 925, 936

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units On a: Weekday


Setting/Location: General Urban/Suburban

Number of Studies: 159 Avg. Num. of Dwelling Units:

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.44	4.81 - 19.39	2.10

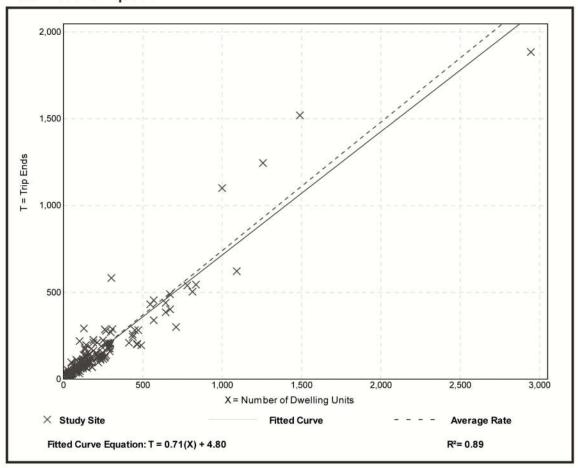
Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.


Setting/Location: General Urban/Suburban

Number of Studies: 173 Avg. Num. of Dwelling Units:

Directional Distribution: 25% entering, 75% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.74	0.33 - 2.27	0.27

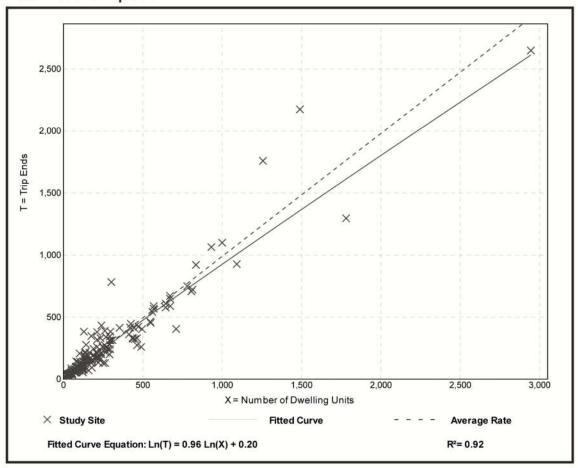
Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.


Setting/Location: General Urban/Suburban

Number of Studies: Avg. Num. of Dwelling Units:

Directional Distribution: 63% entering, 37% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.99	0.44 - 2.98	0.31

Land Use: 220 Multifamily Housing (Low-Rise)

Description

Low-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have one or two levels (floors). Multifamily housing (mid-rise) (Land Use 221), multifamily housing (high-rise) (Land Use 222), and off-campus student apartment (Land Use 225) are related land uses.

Additional Data

In prior editions of *Trip Generation Manual*, the low-rise multifamily housing sites were further divided into rental and condominium categories. An investigation of vehicle trip data found no clear differences in trip making patterns between the rental and condominium sites within the ITE database. As more data are compiled for future editions, this land use classification can be reinvestigated.

For the three sites for which both the number of residents and the number of occupied dwelling units were available, there were an average of 2.72 residents per occupied dwelling unit.

For the two sites for which the numbers of both total dwelling units and occupied dwelling units were available, an average of 96.2 percent of the total dwelling units were occupied.

This land use included data from a wide variety of units with different sizes, price ranges, locations, and ages. Consequently, there was a wide variation in trips generated within this category. Other factors, such as geographic location and type of adjacent and nearby development, may also have had an effect on the site trip generation.

Time-of-day distribution data for this land use are presented in Appendix A. For the 10 general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:15 and 8:15 a.m. and 4:45 and 5:45 p.m., respectively. For the one site with Saturday data, the overall highest vehicle volume was counted between 9:45 and 10:45 a.m. For the one site with Sunday data, the overall highest vehicle volume was counted between 11:45 a.m. and 12:45 p.m.

For the one dense multi-use urban site with 24-hour count data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:00 and 8:00 a.m. and 6:15 and 7:15 p.m., respectively.

For the three sites for which data were provided for both occupied dwelling units and residents, there was an average of 2.72 residents per occupied dwelling unit.

The average numbers of person trips per vehicle trip at the five general urban/suburban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.13 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 1.21 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in British Columbia (CAN), California, District of Columbia, Florida, Georgia, Illinois, Indiana, Maine, Maryland, Minnesota, New Jersey, New York, Ontario, Oregon, Pennsylvania, South Dakota, Tennessee, Texas, Utah, Virginia, and Washington.

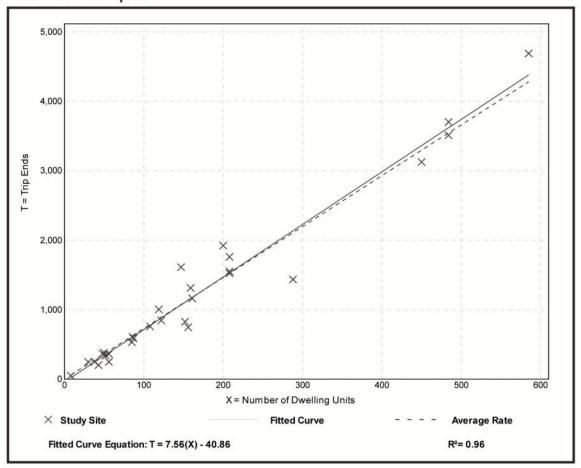
It is expected that the number of bedrooms and number of residents are likely correlated to the number of trips generated by a residential site. Many of the studies included in this land use did not indicate the total number of bedrooms. To assist in the future analysis of this land use, it is important that this information be collected and included in trip generation data submissions.

Source Numbers

168, 187, 188, 204, 211, 300, 305, 306, 319, 320, 321, 357, 390, 412, 418, 525, 530, 571, 579, 583, 864, 868, 869, 870, 896, 903, 918, 946, 947, 948, 951

Multifamily Housing (Low-Rise) (220)

Vehicle Trip Ends vs: Dwelling Units On a: Weekday


Setting/Location: General Urban/Suburban

Number of Studies: Avg. Num. of Dwelling Units: 168

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
7.32	4.45 - 10.97	1.31

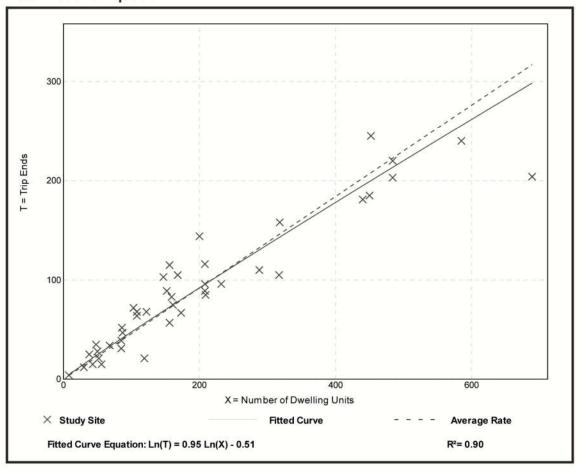
Multifamily Housing (Low-Rise) (220)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.


Setting/Location: General Urban/Suburban

Number of Studies: 42

Avg. Num. of Dwelling Units: 199
Directional Distribution: 23% entering, 77% exiting

Vehicle Trip Generation per Dwelling Unit

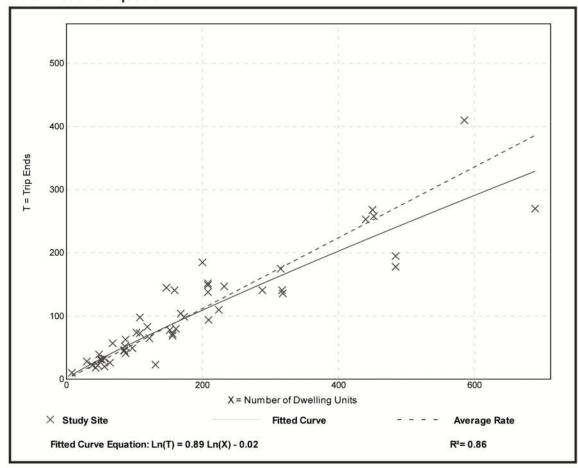
Average Rate	Range of Rates	Standard Deviation
0.46	0.18 - 0.74	0.12

Multifamily Housing (Low-Rise) (220)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.


Setting/Location: General Urban/Suburban

Number of Studies: Avg. Num. of Dwelling Units: 187

Directional Distribution: 63% entering, 37% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation	
0.56	0.18 - 1.25	0.16	

Land Use: 221 Multifamily Housing (Mid-Rise)

Description

Mid-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have between three and 10 levels (floors). Multifamily housing (low-rise) (Land Use 220), multifamily housing (high-rise) (Land Use 222), off-campus student apartment (Land Use 225), and mid-rise residential with 1st-floor commercial (Land Use 231) are related land uses.

Additional Data

In prior editions of *Trip Generation Manual*, the mid-rise multifamily housing sites were further divided into rental and condominium categories. An investigation of vehicle trip data found no clear differences in trip making patterns between the rental and condominium sites within the ITE database. As more data are compiled for future editions, this land use classification can be reinvestigated.

For the six sites for which both the number of residents and the number of occupied dwelling units were available, there were an average of 2.46 residents per occupied dwelling unit.

For the five sites for which the numbers of both total dwelling units and occupied dwelling units were available, an average of 95.7 percent of the total dwelling units were occupied.

Time-of-day distribution data for this land use are presented in Appendix A. For the eight general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:00 and 8:00 a.m. and 4:45 and 5:45 p.m., respectively.

For the four dense multi-use urban sites with 24-hour count data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:15 and 8:15 a.m. and 4:15 and 5:15 p.m., respectively. For the three center city core sites with 24-hour count data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 6:45 and 7:45 a.m. and 5:00 and 6:00 p.m., respectively.

For the six sites for which data were provided for both occupied dwelling units and residents, there was an average of 2.46 residents per occupied dwelling unit.

For the five sites for which data were provided for both occupied dwelling units and total dwelling units, an average of 95.7 percent of the units were occupied.

The average numbers of person trips per vehicle trip at the five center city core sites at which both person trip and vehicle trip data were collected were as follows:

- 1.84 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- · 1.94 during Weekday, AM Peak Hour of Generator
- · 2.07 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- · 2.59 during Weekday, PM Peak Hour of Generator

The average numbers of person trips per vehicle trip at the 32 dense multi-use urban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.90 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- · 1.90 during Weekday, AM Peak Hour of Generator
- · 2.00 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- · 2.08 during Weekday, PM Peak Hour of Generator

The average numbers of person trips per vehicle trip at the 13 general urban/suburban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.56 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- · 1.88 during Weekday, AM Peak Hour of Generator
- 1.70 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- · 2.07 during Weekday, PM Peak Hour of Generator

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), British Columbia (CAN), California, Delaware, District of Columbia, Florida, Georgia, Illinois, Maryland, Massachusetts, Minnesota, New Hampshire, New Jersey, Ontario, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Utah, Virginia, and Wisconsin.

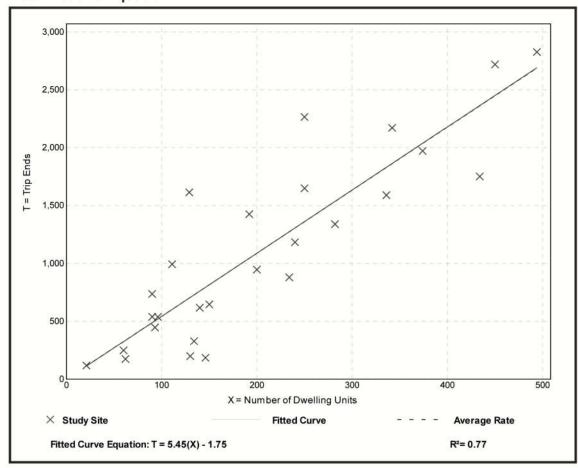
Source Numbers

168, 188, 204, 305, 306, 321, 357, 390, 436, 525, 530, 579, 638, 818, 857, 866, 901, 904, 910, 912, 918, 934, 936, 939, 944, 947, 948, 949, 959, 963, 964, 966, 967, 969, 970

Multifamily Housing (Mid-Rise) (221)

Vehicle Trip Ends vs: Dwelling Units On a: Weekday

Setting/Location: General Urban/Suburban


Number of Studies: Avg. Num. of Dwelling Units:

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
5.44	1.27 - 12.50	2.03

Data Plot and Equation

Multifamily Housing (Mid-Rise) (221)

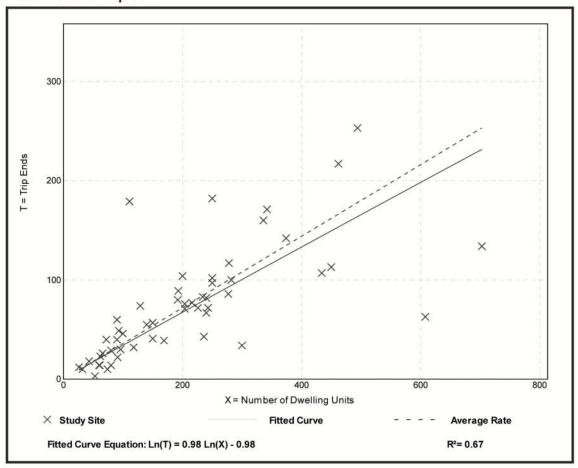
Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban


Number of Studies: Avg. Num. of Dwelling Units: 207

Directional Distribution: 26% entering, 74% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.36	0.06 - 1.61	0.19

Data Plot and Equation

Multifamily Housing (Mid-Rise) (221)

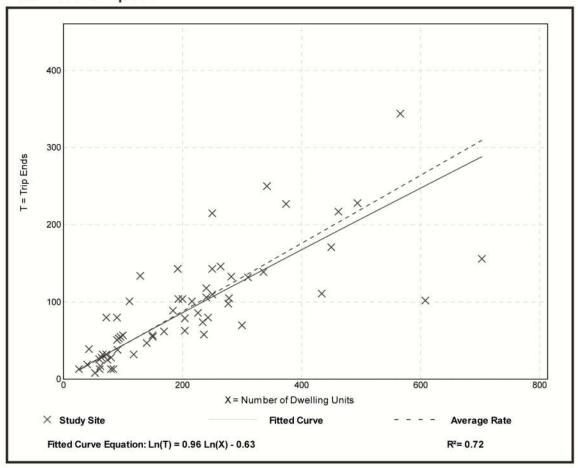
Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

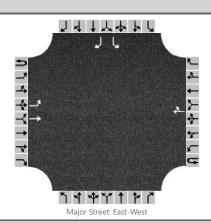
Setting/Location: General Urban/Suburban


Number of Studies: Avg. Num. of Dwelling Units: 208

Directional Distribution: 61% entering, 39% exiting

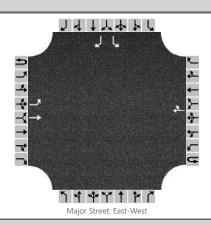
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.44	0.15 - 1.11	0.19


Data Plot and Equation

APPENDIX C Capacity Analysis Printouts

	HCS7 Two-Way Stop-Control Report													
General Information		Site Information												
Analyst		Intersection	119th Street @ Book Rd.											
Agency/Co.		Jurisdiction												
Date Performed	5/15/2018	East/West Street	119th Street											
Analysis Year	2025	North/South Street	Book Rd.											
Time Analyzed	AM Peak	Peak Hour Factor	0.92											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description														


Approach		Eastb	ound			Westl	oound			North	bound		Southbound					
Movement	U	L	Т	R	U L T R				U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1		
Configuration		L	Т					TR						L		R		
Volume, V (veh/h)		10	597				312	18						45		17		
Percent Heavy Vehicles (%)		3												3		3		
Proportion Time Blocked																		
Percent Grade (%)													0					
Right Turn Channelized		N	10			Ν	10			Ν	lo		No					
Median Type/Storage				Undi	vided													

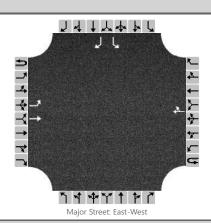
Critical and Follow-up Headways

Base Critical Headway (sec)	4.1						7.1	6.2
Critical Headway (sec)	4.13						6.43	6.23
Base Follow-Up Headway (sec)	2.2						3.5	3.3
Follow-Up Headway (sec)	2.23						3.53	3.33

J, - J,															
Flow Rate, v (veh/h)	11											49		18	
Capacity, c (veh/h)	1193											259		692	
v/c Ratio	0.01											0.19		0.03	
95% Queue Length, Q (veh)	0.0											0.7		0.1	
Control Delay (s/veh)	8.0											22.1		10.3	
Level of Service, LOS	А											С		В	
Approach Delay (s/veh)	0).1										18	3.9		
Approach LOS											С				

	HCS7 Two-Way Stop-Control Report													
General Information		Site Information												
Analyst		Intersection	119th Street @ Book Rd.											
Agency/Co.		Jurisdiction												
Date Performed	5/15/2018	East/West Street	119th Street											
Analysis Year	2025	North/South Street	Book Rd.											
Time Analyzed	PM Peak	Peak Hour Factor	0.92											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description														

Vehicle	Volumes	and	Adjustments	
---------	---------	-----	-------------	--


Approach		Eastb	ound			Westl	oound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1	
Configuration		L	Т					TR						L		R	
Volume, V (veh/h)		19	428				628	48						30		15	
Percent Heavy Vehicles (%)		3												3		3	
Proportion Time Blocked																	
Percent Grade (%)													0				
Right Turn Channelized		N	lo			Ν	lo			N	lo			N	lo		
Median Type/Storage				Undi	Undivided												

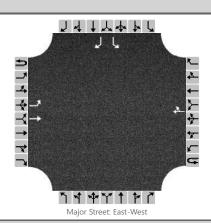
Critical and Follow-up Headways

Base Critical Headway (sec)								
Critical Headway (sec)								
Base Follow-Up Headway (sec)								
Follow-Up Headway (sec)								

J , -										
Flow Rate, v (veh/h)	21							33		16
Capacity, c (veh/h)	865							195		432
v/c Ratio	0.02							0.17		0.04
95% Queue Length, Q (veh)	0.1							0.6		0.1
Control Delay (s/veh)	9.3							27.2		13.7
Level of Service, LOS	Α							D		В
Approach Delay (s/veh)	0	.4						22	2.7	
Approach LOS								(2	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst		Intersection	119th Street @ Polo Club
Agency/Co.		Jurisdiction	
Date Performed	5/15/2018	East/West Street	119th Street
Analysis Year	2025	North/South Street	Polo Club Dr.
Time Analyzed	AM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Adjustments

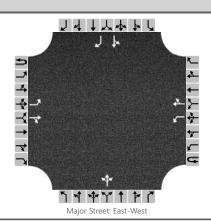

Approach		Eastb	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	Т					TR						L		R
Volume, V (veh/h)		25	586				322	7						21		69
Percent Heavy Vehicles (%)		3												3		3
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized		Ν	lo			Ν	10			Ν	lo			Ν	lo	
Median Type/Storage				Undi	ivided											

Critical and Follow-up Headways

Base Critical Headway (sec)								
Critical Headway (sec)								
Base Follow-Up Headway (sec)								
Follow-Up Headway (sec)								

z enary, queure zenigun, uniu	 									
Flow Rate, v (veh/h)	27							23		75
Capacity, c (veh/h)	1194							246		687
v/c Ratio	0.02							0.09		0.11
95% Queue Length, Q (veh)	0.1							0.3		0.4
Control Delay (s/veh)	8.1							21.1		10.9
Level of Service, LOS	А							С		В
Approach Delay (s/veh)	0	.3						13	3.3	
Approach LOS								1	 В	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst		Intersection	119th Street @ Polo Club
Agency/Co.		Jurisdiction	
Date Performed	5/15/2018	East/West Street	119th Street
Analysis Year	2025	North/South Street	Polo Club Dr.
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	Т					TR						L		R
Volume, V (veh/h)		68	433				620	23						14		49
Percent Heavy Vehicles (%)		3												3		3
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized		١	10			Ν	lo			Ν	lo			Ν	10	
Median Type/Storage				Undi	ivided											

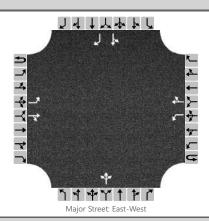
Critical and Follow-up Headways

Base Critical Headway (sec)	4.1						7.1	6.2
Critical Headway (sec)	4.13						6.43	6.23
Base Follow-Up Headway (sec)	2.2						3.5	3.3
Follow-Up Headway (sec)	2.23						3.53	3.33

zenay, queue zengan, una	 									
Flow Rate, v (veh/h)	74							15		53
Capacity, c (veh/h)	892							161		446
v/c Ratio	0.08							0.09		0.12
95% Queue Length, Q (veh)	0.3							0.3		0.4
Control Delay (s/veh)	9.4							29.6		14.2
Level of Service, LOS	А							D		В
Approach Delay (s/veh)	1	.3						17	7.6	
Approach LOS								(

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst		Intersection	119th St. @ Wolf Dr./Site
Agency/Co.		Jurisdiction	
Date Performed	5/15/2018	East/West Street	119th Street
Analysis Year	2025	North/South Street	Wolf Dr./Site
Time Analyzed	AM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Vol	umes an	d Ad	iustments
-------------	---------	------	-----------


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	1
Configuration		L		TR		L		TR			LTR			LT		R
Volume, V (veh/h)		15	534	10		5	371	15		26	0	24		53	0	27
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized		Ν	lo		No					Ν	lo			N	lo	
Median Type/Storage				Undi	ndivided											

Critical and Follow-up Headways

Base Critical Headway (sec)								
Critical Headway (sec)								
Base Follow-Up Headway (sec)								
Follow-Up Headway (sec)								

Delay, Queue Zengin, and	 0.5											
Flow Rate, v (veh/h)	16			5				54		58		29
Capacity, c (veh/h)	1133			979				272		190		638
v/c Ratio	0.01			0.01				0.20		0.30		0.05
95% Queue Length, Q (veh)	0.0			0.0				0.7		1.2		0.1
Control Delay (s/veh)	8.2			8.7				21.5		32.1		10.9
Level of Service, LOS	Α			А				С		D		В
Approach Delay (s/veh)	0	.2	0.1			21	.5		24	1.9		
Approach LOS							(2		(2	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst		Intersection	119th St. @ Wolf Dr./Site
Agency/Co.		Jurisdiction	
Date Performed	5/15/2018	East/West Street	119th Street
Analysis Year	2025	North/South Street	Wolf Dr./Site
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	1
Configuration		L		TR		L		TR			LTR			LT		R
Volume, V (veh/h)		51	459	32		12	617	40		18	0	12		30	0	15
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized		Ν	lo		No					Ν	lo			N	lo	
Median Type/Storage				Undi	ndivided											

Critical and Follow-up Headways

Base Critical Headway (sec)								
Critical Headway (sec)								
Base Follow-Up Headway (sec)								
Follow-Up Headway (sec)								

- out, que action gain, and													
Flow Rate, v (veh/h)	55				13				33		33		16
Capacity, c (veh/h)	881				1028				168		117		442
v/c Ratio	0.06				0.01				0.19		0.28		0.04
95% Queue Length, Q (veh)	0.2				0.0				0.7		1.1		0.1
Control Delay (s/veh)	9.4				8.5				31.5		47.5		13.5
Level of Service, LOS	Α				Α				D		Е		В
Approach Delay (s/veh)	0.	9		0.2			31	.5		36	5.1		
Approach LOS								[)			E	

Memorandum

GEWALT HAMILTON CONSULTING ENGINEERS

625 Forest Edge Drive, Vernon Hills, IL 60061 Tel 847.478.9700 Fax 847.478.9701

www.gha-engineers.com

To:

Chris Nichols

City of Naperville

From:

Bill Grieve, P.E., PTOE

BG Sr. Transportation Engineer

Date:

May 23, 2018

Subject:

Polo Club

May 15, 2018 Traffic Impact Study Addendum

Attached are the following materials as an addendum to the Gewalt Hamilton Associates, Inc. (GHA) Traffic Impact Study (TIS) dated May 15, 2018 for the proposed Polo Club residential development:

- Exhibit 7 Total Traffic Year 2025 has been revised to reflect the increases in eastbound through traffic on 119th Street. The westbound volumes remain unchanged.
- Exhibit 8 Intersection Capacity Analyses has been revised to reflect the changes in delay and Level of Service (LOS) at the 119th Street intersections with Book Road, Polo Club Drive, and Wolf Drive / apartment full access.
- The HCS printouts are attached and reflect the change in median type on 119th Street from "Undivided" to "Left Only". That change is appropriate as we understand that separate left turn lanes will be striped at the 119th Street intersections with Book Road, Polo Club Drive, and Wolf Drive / apartment full access.

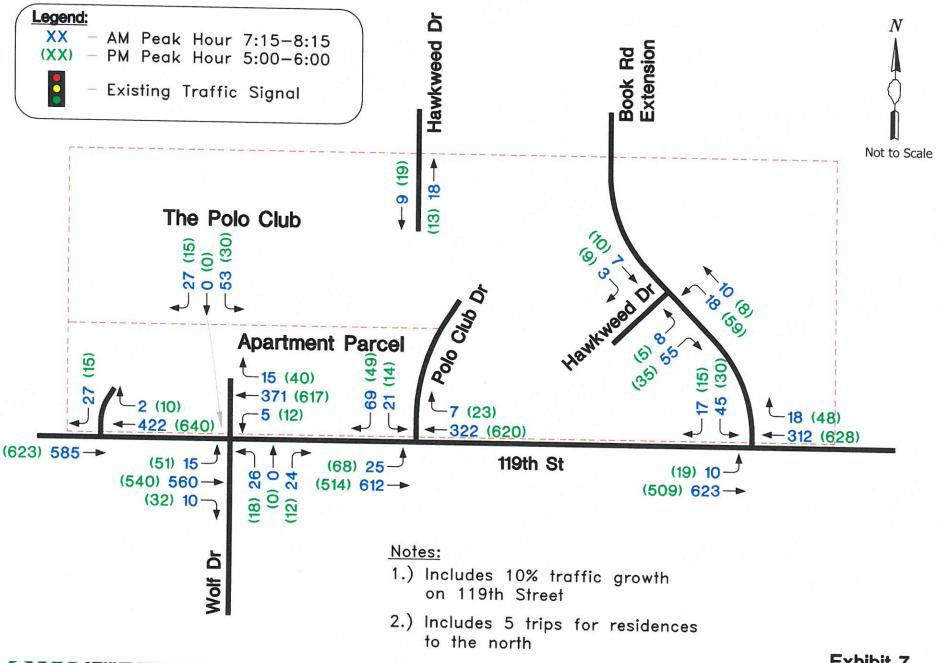
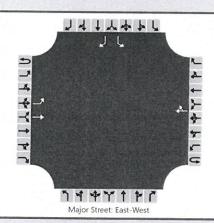


Exhibit 7 Total Traffic Year 2025

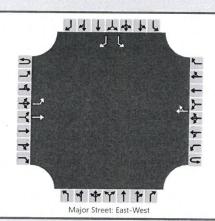
Exhibit 8 Intersection Capacity Analyses


Polo Club - Naperville, Illinois

Part A. Parameters - Type of Traffic Control (Source: 2016 Highway Capacity Manual)

I. Traffic Signals						9		, 00	φαυ	ity n	iaiiu	,				
												II.	Sto	p Si	gn	
LOS Delay (sec / veh) ≤ 10	Description											LO	<u>s</u>	<u></u>	Delay (sec / v	veh)
B >10 and ≤ 20	All signal phases	clear waiting vehicles	with	out d	elay							A			≤ 10	
C >20 and ≤ 35	Same delay ex	perienced on select si	gnal	phase	es							B			>10 and ≤ 1	5
D >35 and ≤ 55	Some delay expe	erienced on several ph	ases	; ofte	n use	d as	desig	n crite	eria			C			>15 and ≤ 2	5
E >55 and ≤ 80	Vanish and st	ed as the acceptable of	delay	stand	dard							D			>25 and ≤ 3	5
F >80	Unaccentable de	experienced during th	e pea	ak ho	urs							E			>35 and ≤ 50	0
	Onacceptable de	lays experienced throu	ughou	ut the	peak	hou	S					F			>50	
Part B. Results				LO	S Pe	r Mo	vem	ent	Gro	up E	By A	ppro	ach			
		Traffic Control					>:	= Sha	red L	ane					1	
		& Roadway	1	эт с	= -	Non C	ritical	or no	ot Alle	owed	Move	ment			Intersecti	
		Conditions	 ''	(1 - 3	marec	Inro	ugh/F	kight	lane ((with e	extra	Throu	gh la	ne)	Approa	ch
			Ea	stbo	und	W	estbo	und	No	rthbo	und	So	uthbo	und	Delay (sec / veh)	LOS
1. 119th Street @ Book Roa	ad	SB Stops	Ī											una		
			LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	SB Approach	ı Delay
A. Weekday Morning Peak																
Total Traffic - Year 2025 (s		 As Planned 	Α	-	-	-	-	_	-		-	С	_	В	14.6	В
B. Weekday Evening Peak	Hour															
Total Traffic		As Planned	Α	-	-	-	-	-	-	-	-	C	-	В	16.5	С
				_					_							
2. 119th Street @ Polo Club	Dr.	SB Stops	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	ТН	RT	SB Approach	Delay
A. Weekday Morning Peak	Hour															\Box
Total Traffic		As Planned														
B. Weekday Evening Peak	Ua	As Planned	A	_	-	-	-	-	-	-	-	C	-	В	12.0	В
Total Traffic	nour															
Total Traffic		As Planned	A	-	-	-	-	-	-	-	-	C	-	В	15.2	С
3 110th Street @ Welf D.		NB/SB Stops									_					
3. 119th Street @ Wolf Dr. /		ND/3D Stops	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	SB Approach	Delay
A. Weekday Morning Peak	Hour															
Total Traffic		As Planned	A	_	_	Δ		ا	>	С	<	С			40.7	
B. Weekday Evening Peak	Hour					-	_	-		C		C	<	В	16.7	С
Total Traffic		As Disposed														
		As Planned	A	-	-	A	-	-	>	C	<	C	<	В	20.4	С

General Information		Site Information	
Analyst		Intersection	119th Street @ Book Rd
Agency/Co.		Jurisdiction	
Date Performed	5/23/2018	East/West Street	119th Street
Analysis Year	2025	North/South Street	Book Rd.
Time Analyzed	AM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25

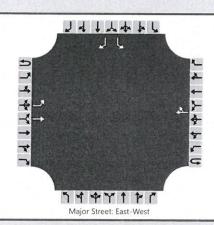

Approach		East	bound			West	tbound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	Т					TR						L		R
Volume, V (veh/h)		10	623				312	18		Tell les	The case			45		17
Percent Heavy Vehicles (%)		3												3		3
Proportion Time Blocked				Battle	r, det											
Percent Grade (%)													455.00	(
Right Turn Channelized		N	lo			1	No			N	0		75.76	N	0	
Median Type/Storage		Left C														

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1					7.1	6.2
Critical Headway (sec)	4.13				10 to	6.43	6.23
Base Follow-Up Headway (sec)	2.2					3.5	3.3
Follow-Up Headway (sec)	2.23					3.53	3.33

The same of the sa				Party William State of the I		
Flow Rate, v (veh/h)	11				49	18
Capacity, c (veh/h)	1193				370	692
v/c Ratio	0.01				0.13	0.03
95% Queue Length, Q ₉₅ (veh)	0.0				0.5	0.1
Control Delay (s/veh)	8.0				16.2	10.3
Level of Service, LOS	А				С	В
Approach Delay (s/veh)	0	.1			14.6	
Approach LOS					D	

General Information		Site Information	
Analyst		Intersection	119th Street @ Book Rd
Agency/Co.		Jurisdiction	
Date Performed	5/23/2018	East/West Street	119th Street
Analysis Year	2025	North/South Street	Book Rd.
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25


Vehicle Volumes	and Adjustments
-----------------	-----------------

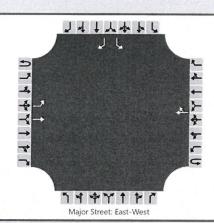
Approach		East	bound			West	bound			North	bound		Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		LT						TR						L		R
Volume, V (veh/h)		19	509		1000		628	48		3/23				30	1000	15
Percent Heavy Vehicles (%)		3												3		3
Proportion Time Blocked				LESSES	9370	field	1000							575.412		
Percent Grade (%))	
Right Turn Channelized		١	lo		20000	٨	lo			N	No		No			TO STATE
Median Type/Storage				Left	Only					1	1					

4.1										7.1		6.2
4.13										6.43	1984.5	6.23
2.2										3.5		3.3
2.23										3.53		3.33
	4.13 2.2	4.13 2.2	4.13	4.13 2.2	4.13 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.	4.13 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.	4.13 2.2	4.13 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.13 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.	4.13	4.13 6.43 2.2 3.5	4.13 6.43 6.43 2.2 3.5 3.5

Flow Rate, v (veh/h)	21			33	16
Capacity, c (veh/h)	865			311	432
v/c Ratio	0.02			0.10	0.04
95% Queue Length, Q ₉₅ (veh)	0.1			0.3	0.1
Control Delay (s/veh)	9.3			17.9	13.7
Level of Service, LOS	A			С	В
Approach Delay (s/veh)	0.3			16.5	
Approach LOS				C	

		Commission of the San Commission	
General Information		Site Information	
Analyst		Intersection	119th Street @ Polo Club
Agency/Co.		Jurisdiction	
Date Performed	5/23/2018	East/West Street	119th Street
Analysis Year	2025	North/South Street	Polo Club Dr.
Time Analyzed	AM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

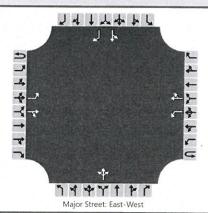

Approach		Eastl	bound			West	bound		Northbound				Southbound				
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1	
Configuration		L	Т					TR						L		R	
Volume, V (veh/h)		25	612				322	7	GE S					21	124.3	69	
Percent Heavy Vehicles (%)		3												3		3	
Proportion Time Blocked			10 mm														
Percent Grade (%)										no avious a)		
Right Turn Channelized		N	lo		No					N	lo			Ν	lo		
Median Type/Storage				Left	Only								1				

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1						7.1	6.2
Critical Headway (sec)	4.13						6.43	6.23
Base Follow-Up Headway (sec)	2.2						3.5	3.3
Follow-Up Headway (sec)	2.23						3.53	3.33

Flow Rate, v (veh/h)	27				23	75
Capacity, c (veh/h)	1194				358	687
v/c Ratio	0.02				0.06	0.11
95% Queue Length, Q ₉₅ (veh)	0.1				0.2	0.4
Control Delay (s/veh)	8.1		\top		15.7	10.9
Level of Service, LOS	A				С	В
Approach Delay (s/veh)	0.3				12.0	
Approach LOS					В	

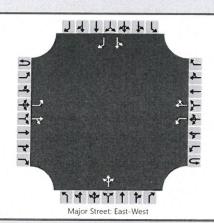
	HCS7 Two	-Way Stop-Control Report	
General Information		Site Information	
Analyst		Intersection	119th Street @ Polo Club
Agency/Co.		Jurisdiction	
Date Performed	5/23/2018	East/West Street	119th Street
Analysis Year	2025	North/South Street	Polo Club Dr.
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	1		



Approach		Eastl	oound			West	bound			North	bound			South	bound	5 2.111(199)
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	Т					TR						L		R
Volume, V (veh/h)		68	514				620	23		TO SE			1000	14		49
Percent Heavy Vehicles (%)		3												3		3
Proportion Time Blocked								The same			I BULL					
Percent Grade (%)														()	
Right Turn Channelized		No No								N	0		No			
Median Type/Storage	1			Left	Only								1			
Critical and Follow-up Ho	eadway	ys														
Base Critical Headway (sec)		4.1		-										7.1		6.2
Critical Headway (sec)		4.13												6.43		6.23
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23			200						3616			3.53		3.33
Delay, Queue Length, and	d Level	of Se	rvice													
Flow Rate, v (veh/h)	T	74						$\neg \neg$						15		53
Capacity, c (veh/h)		892												280		446
v/c Ratio		0.08												0.05		0.12
95% Queue Length, Q ₉₅ (veh)		0.3	14.4-											0.2		0.4
Control Delay (s/veh)		9.4												18.6		14.2
Level of Service, LOS		Α												С		В
Approach Delay (s/veh)	1	1.				_						_		15.		

Approach LOS

C


HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst		Intersection	119th St. @ Wolf Dr./Site						
Agency/Co.		Jurisdiction							
Date Performed	5/23/2018	East/West Street	119th Street						
Analysis Year	2025	North/South Street	Wolf Dr./Site						
Time Analyzed	AM Peak	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description									

Approach	Eastbound			Westbound				Northbound				Southbound				
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	1
Configuration		L		TR		L		TR			LTR			LT		R
Volume, V (veh/h)		15	560	10		5	371	15		26	0	24	J. T. W.	53	0	27
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked									D. S.				Para Sala		0.95	2233
Percent Grade (%)										()			()	
Right Turn Channelized		N	lo		No			No				No				
Median Type/Storage	Left Only								-							
Critical and Follow-up I	leadway	/S													View of	
Base Critical Headway (sec)								100000				313,54				

Proportion Time Blocked						
Percent Grade (%)			0	0		
Right Turn Channelized	No	No	No	No		
Median Type/Storage		Left Only		1		
Critical and Follow-up Hea	dways					
Base Critical Headway (sec)						
Critical Headway (sec)						
Base Follow-Up Headway (sec)						
Follow-Up Headway (sec)						
Delay, Queue Length, and	Level of Service					
Flow Rate, v (veh/h)	16	5	54	58 29		
Capacity, c (veh/h)	1133	955	375	303 638		
v/c Ratio	0.01	0.01	0.15	0.19 0.05		
95% Queue Length, Q ₉₅ (veh)	0.0	0.0	0.5	0.7 0.1		
Control Delay (s/veh)	8.2	8.8	16.2	19.7 10.9		
Level of Service, LOS	A	A	С	СВ		
Approach Delay (s/veh)	0.2	0.1	16.2	16.7		
Approach LOS			С	С		

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst		Intersection	119th St. @ Wolf Dr./Site						
Agency/Co.		Jurisdiction							
Date Performed	5/23/2018	East/West Street	119th Street						
Analysis Year	2025	North/South Street	Wolf Dr./Site						
Time Analyzed	PM Peak	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description									

Eastbound W				West	bound		Northbound				Southbound				
U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
10	1	2	3	4U	4	5	6		7	8	9		10	11	12
0	1	1	0	0	1	1	0		0	1	0		0	1	1
	L		TR		L		TR			LTR			LT		R
	51	540	32		12	617	40		18	0	12	1	30	0	15
	3				3				3	3	3		3	3	3
								Page 1							
										0			(0	
A 53. LL	١	lo			١	10		No				No			
Left Only										1					
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	10	U L 1U 1 0 1 L 51 3	U L T 1U 1 2 0 1 1 L 51 540	U L T R 1U 1 2 3 0 1 1 0 L TR 51 540 32 3 No	U L T R U 1U 1 2 3 4U 0 1 1 0 0 L TR 51 540 32 3 No	U L T R U L 1U 1 2 3 4U 4 0 1 1 0 0 1 L TR L 51 540 32 12 3 No	U L T R U L T 1U 1 2 3 4U 4 5 0 1 1 0 0 1 1 L TR L 51 540 32 12 617 3 No No	U L T R U L T R 1U 1 2 3 4U 4 5 6 0 1 1 0 0 1 1 0 L TR L TR 51 540 32 12 617 40 3 No No	U L T R U L T R U 1U 1 2 3 4U 4 5 6 0 1 1 0 0 1 1 0 L TR L TR 51 540 32 12 617 40 3 3 No No	U L T R U L T R U L 1U 1 2 3 4U 4 5 6 7 0 1 1 0 0 1 1 0 0 L TR L TR 51 540 32 12 617 40 18 3 3 3 3 3 3 3	U L T R U L T R U L T 1U 1 2 3 4U 4 5 6 7 8 0 1 1 0 0 1 1 0 0 1 L TR L TR LTR 51 540 32 12 617 40 18 0 3 3 3 3 3 3 3 3 3 3	U L T R U L T R U L T R 9 1U 1 2 3 4U 4 5 6 7 8 9 0 1 1 0 0 1 1 0 0 1 0 1 0 L TR L TR L TR LTR 51 540 32 12 617 40 18 0 12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	U L T R U L T R U L T R U L T R U 10 10 11 1 0 0 11 0 0 11 0 0 11 0 0 12 0 12 0 13 3 3 3 3 3 3 0 0 10 10 0 0 10 0 1	U L T R U L T	U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L R U L T R

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1	4.1	7.1	6.5	6.2	7.1	6.5	6.2
Critical Headway (sec)	4.13	4.13	7.13	6.53	6.23	7.13	6.53	6.23
Base Follow-Up Headway (sec)	2.2	2.2	3.5	4.0	3.3	3.5	4.0	3.3
Follow-Up Headway (sec)	2.23	2.23	3.53	4.03	3.33	3.53	4.03	3.33

Flow Rate, v (veh/h)	55	13	33	33	16	
Capacity, c (veh/h)	881	953	274	223	442	
v/c Ratio	0.06	0.01	0.12	0.15	0.04	
95% Queue Length, Q ₉₅ (veh)	0.2	0.0	0.4	0.5	0.1	
Control Delay (s/veh)	9.4	8.8	19.9	23.9	13.5	
Level of Service, LOS	A	A	С	С	В	
Approach Delay (s/veh)	0.8	0.2	19.9	20.4		
Approach LOS			С	С		