PRELIMINARY STORMWATER MANAGEMENT ANALYSIS & REPORT # FOR # THE PROSPERITA & ORION STEM SCHOOLS NAPERVILLE, ILLINOIS REVISED JUNE 05, 2023 REVISED APRIL 12, 2023 REVISED FEBRUARY 14, 2023 REVISED JANUARY 30, 2023 REVISED DECEMBER 20, 2022 REVISED SEPTEMBER 30, 2022 REVISED SEPTEMBER 14, 2022 AUGUST 30, 2022 **JOB NO. 904.426** #### PROFESSIONAL ENGINEER'S CERTIFICATION | STATE OF ILLINOIS } SS. | |--| | COUNTY OF DUPAGE } | | I, RANDALL W. BUS, A LICENSED PROFESSIONAL ENGINEER OF ILLINOIS 415 20 CERTIFY THAT THIS TECHNICAL | | SUBMISSION WAS PREPARED ON BEHALF OF VRUTTHI, LLC BY CEMPON, ITD. UNDER MY PERSONAL DIRECTION. | | DATED THIS 37 DAY OF CONR. PROFESSIONAL 4 | | Confull of the OF | | ILLINOIS LICENSED PROFESSIONAL ENGINEER NO. 062-032381 | | MY LICENSE EXPIRES ON NOVEMBER 30, 2023 | | PROFESSIONAL DESIGN FIRM LICENSE NO. 184002937 – EXPIRES APRIL 30, 2025 | NOTE: UNLESS THIS DOCUMENT BEARS THE ORIGINAL SIGNATURE AND IMPRESSED SEAL OF THE DESIGN PROFESSIONAL ENGINEER, IT IS NOT A VALID TECHNICAL SUBMISSION. PREPARED FOR: VRUTTHI, LLC 3644 WHITE EAGLE CIRCLE NAPERVILLE, IL 600504 PREPARED BY: CEMCON, LTD. 2280 WHITE OAK CIRCLE SUITE 100 AURORA, IL 60502-9675 630-862-2100 # PRELIMINARY STORMWATER MANAGEMENT ANALYSIS & REPORT # FOR # THE PROSPERITA & ORION STEM SCHOOLS # NAPERVILLE, ILLINOIS # **TABLE OF CONTENTS** | SECTION | | PAGE NO. | |---------|---|----------| | I. | PROJECT DESCRIPTION | 1 | | II. | EXISTING DRAINAGE CONDITIONS | 2 - 4 | | III. | PROPOSED WITH-PROJECT CONDITION STORMWATER MANAGEMENT & PCBMP SYSTEMS | 4 – 12 | | IV. | SWPP PLAN IMPLEMENTATION | 12 | | V. | STORMWATER SYSTEMS MONITORING & MAINTENANCE PLAN | 12 | | VI. | SPECIAL MANAGEMENT AREAS | 13 | | VII. | SURETY | 13 | | VIII. | SUMMARY AND CONCLUSION | 13 - 15 | #### PRELIMINARY STORMWATER MANAGEMENT ANALYSIS & REPORT #### FOR # THE PROSPERITA & ORION STEM SCHOOLS NAPERVILLE, ILLINOIS ## **EXHIBITS** #### TAB 1 PROJECT OVERVIEW - A. LOCATION MAP - B. PRELIMINARY SITE DEVELOPMENT PLAN AND PRELIMINARY PLAT OF SUBDIVISION - C. SOILS INVESTIGATION REPORT BY RUBINO ENGINEERING, INC. AND ADDENDUM LETTER WITH INFILTRATION RATES - D. EXISTING CONDITION ONSITE AND OFFSITE CATCHMENT EXHIBIT - E. EXISTING CONDITION PONDPACK FLOOD ROUTING MODEL FOR EACH CATCHMENT BASED ON CN & TC (REVISED) - F. PROPOSED CONDITION ONSITE AND OFFSITE CATCHMENT EXHIBIT AND STORMWATER MANAGEMENT SUMMARY AND DETAIL SHEETS 1, 2 & 3 - G. PROPOSED CONDITION COLLECTIVE EXHIBIT OF FLOW CHARTS, PONDPACK SUMMARIES AND EXECUTIVE SUMMARY, OVERLAND FLOOD ROUTE EXHIBIT AND FLOW MASTER COMPUTATIONS (SPECIFIC FLOOD ROUTING MODELS AVAILABLE UPON REQUEST), - H. ILLUSTRATION OF SPECIAL SUB-SURFACE MODULES WITH REQUIRED PCBMP STORAGE AND TYPICAL SECTIONS (SEE EXHIBITS F1, F2 AND F1 & 2) - I. WETLAND MAPS AND FLOODPLAIN MAPS - J. NEGATIVE WETLAND FINDINGS REPORT CONDUCTED BY ENCAP, INC. # PRELIMINARY STORMWATER MANAGEMENT ANALYSIS & REPORT FOR # THE PROSPERITA & ORION STEM SCHOOLS NAPERVILLE, ILLINOIS # I. PROJECT DESCRIPTION The Prosperita & Orion STEM Schools Project will be platted and developed on a $12.35\pm$ acre property assemblage comprised of small lots and vacated rights-of-way in Naper Villa Manor originally subdivided in 1926. The property abuts Diehl Rd. on the north, Mill St. on the east, West St. (ironically) on the west, and Harborchase of Naperville on the south (see Exhibit A). Additional rights-of-way ($0.36\pm$ acres) will be dedicated for the Mill St. pavements and street lights which already encroach onto the property and for future public use sidewalks. The north half of the existing driveway off Harborchase was previously included in the stormwater management system for that project ($0.18\pm$ acres), so site runoff storage and PCBMPs have already been provided for that area. Within the proposed Mill St. ROW dedication of $0.36\pm$ acres a right turn lane and public sidewalk will be constructed so the Net Area of the On-Site Development will be $12.35-0.54=11.81\pm$ acres. This On-Site Development Area will be platted into two (2) lots, one of which to the north on $5.01\pm$ acres will be the site of a private STEM school for grades K - 8, and on the lot of $6.80\pm$ acres to the south, 76 townhome units will be constructed, all of which development will be accessed via private streets but served by the City's public sanitary sewer collection and water distribution systems that will be extended within PU&DE along with both public and private street access easements. The Prosperita & Orion STEM School Project also has access rights to the private driveway previously constructed along the north and east sides of Harborchase with access to West St. and to Commons Dr. (and the traffic signal at Mill St. and Commons Dr.). Otherwise, a right-in-right-out driveway with dedicated right turn lane is proposed off Mill St. along with a full access driveway on West St. with right out and left out turn lanes for westbound Perla Dr., which will be marked with striping and signage and a mountable median to preclude through traffic into the Little Friends driveway to the west (see Preliminary Plat and Preliminary Site Development Plan in Exhibit B). # II. EXISTING DRAINAGE CONDITIONS There is approximately 12 feet of topographic relief across the property from the high point near the northeasterly corner at 738.8± to the low point at the end section of a15-inch RCP stubbed from the Harborchase development with a flowline of 726.7± which extends westward across West St. and along Conestoga Rd. with eventual discharge to Cress Creek. When the capacity of this 15-inch storm sewer is exceeded during the critical 100-year shorter duration storms, overflows do occur into the Harborchase storm drainage system which then discharges to the existing 36-inch storm sewer on Mill Street at Commons Drive. There are very slight depressional areas near the southerly central portion of the site a few tenths of a foot deep which do not collectively afford any attenuating effect on existing rates of runoff and two (2) slightly deeper depressional areas in the northwesterly corner of the site that overflow to the southeast into a swale which depressions may have a potential attenuating effect so they were modeled in the Existing Condition Flood Routing Analysis in revised Exhibit E. There is also an existing 15- and 18-inch public storm drain along West St. that is fairly shallow and extends northward to Diehl Rd. and then westward along Diehl Rd. and a deeper 36-inch storm sewer (FL = 721.3±) along Mill St. that extends southward with discharge also to Cress Creek. These storm sewer systems are depicted in the City's storm sewer atlas sheets. A Soils Investigation was conducted by Rubino Engineering, Inc. which revealed that soils ranging over the Project Site were relatively consistent with about 12± inches of topsoil and a silty clay layer extending 8-9 feet down to elevation 721± which soils are then underlain by a thick glacial sand and gravel deposit with 1-2 feet of finer grained sands and gravel in the upper layer trending to coarse sands and gravels down to at least 25 feet below grade (705-706) (see Exhibit C). No ground water was observed in any of the soil boring logs. From well logs in the area, this glacial formation extends in a layer 30± feet thick to the West Branch DuPage River, which formation was extensively mined over the years including the Erb Family Gravel Pit immediately across West St. from this Site (which was later developed into the Century Farms residential subdivision). Rubino Engineering, Inc. also conducted sieve analyses on the upper layer of silt and fine sands in the 720-721 interval and also in the slightly lower coarse grained sands and gravel in the 719-720 interval, which analyses are summarized in an Addendum Letter dated 3/24/23 attached to Exhibit C. Each of the three (3) sieve analyses were then correlated to an infiltration rate using the USDA Textural Classification Chart. Except for the one sieve analysis in an upper silty layer (720-721) indicating an infiltration rate of 1.63 in/hr, the sieve analyses in the medium dense to dense well graded gravel with sand and silt were correlated to have infiltration rates of 3.60 in/hr. Even these infiltration rates are likely conservative and there is a concern that, in conducting an infiltrometer test on the graded gravel and coarser sand below elevation 719, a sustained water level will not be achievable in calculating a steady state infiltration rate under typical infiltrometer test procedures. Additional testing is currently underway. In the Existing (Without Project) Condition, about <u>11.51</u>± acres of the gross 12.35± acre Site are directly tributary to the 15-inch end section and the West St. / Conestoga Rd. drainage system (with possible overflows to the Harborchase drainage system) while 0.31± acres of the Site are tributary to the West St. or Diehl Rd. ROW's which both drain into the Diehl Rd. 18-inch storm sewer system. About 0.35± acres of the Site in the northeast corner drain to the Mill St. ROW and the 36-inch storm sewer (see Existing Catchment Exhibit D). Exhibit D also delineates those offsite portions of the West St. and Diehl Rd. ROW's that drain into the Site (0.50± acres) and delineates those sections of the Mill St. ROW that are now, but may or may not continue to be, directly tributary to the 36-inch storm sewer on Mill St which sections consist of the roadway pavement itself from a high point in the curb line about 160 feet southerly of the Diehl Rd. intersection and extending from the centerline of pavement to back of curb and from the high point to the curb line inlet at the southeasterly corner of the Site (0.65± acres). Pondpack flood routing models were devised for each of these catchment areas based on
their respective CN's and TC's, the work sheets for which and the flood routing results are contained in the Existing Condition Pondpack Flood Routing Model Exhibit E. For the 11.51± acre onsite catchment and the 0.50± acres of the Diehl Rd. and West St. ROW's that drain into the Site and then to the 15-inch end section in the southwest corner, the peak rate of runoff for the 2-year and 100-year 24-hour duration design rainstorm events of Bulletin 75 and Huff Distributions (Design Storms) were determined to be 1.89± cfs and 7.91± cfs respectively. The existing 15-inch storm sewer is capable of intercepting and conveying these peak flow rates to the 15-inch West St. / Conestoga drainage system but, for the critical 100-year storms of shorter duration, overflows do occur into the Harborchase drainage system which connects to the Mill St. storm sewer system. For the combined 0.48± acres of the Mill St. and Diehl Rd. rights-of-way that are tributary to the 18-inch storm sewer system on West Diehl Rd., the peak rates of Design Storm runoff were determined to be 0.09± cfs and 0.32± cfs respectively. For those onsite catchments that are tributary to the West St. storm system which drains northward and connects to the Diehl Rd. system (0.04± acres) and the 0.27± acres in the northeast corner that also drain to the Diehl Rd. system (0.31± acres in total), the peak rates of runoff for the Design Storms were determined to be 0.06± cfs and 0.21± cfs respectively. The 0.35± acre On-Site Catchment Area also in the northeast quadrant of the Site and adjacent to the Mill St. ROW that is tributary to the Mill St. 36-inch storm sewer will produce peak rates of runoff for the Design Storms of 0.06± cfs and 0.24± cfs respectively. These peak rates of runoff combined with those sections of the Mill St. ROW up to the curb line inlet at the southeasterly corner that are in the Existing Condition all tributary to the 36-inch storm sewer produce total peak rates of 0.26 cfs and 0.73 cfs respectively for the 2-year and 100-year Design Storms. These rather diffuse distributions of stormwater runoff from the Project Site into three (3) different storm sewer systems under City of Naperville, City of Warrenville and DuDOT jurisdictions present a rather complicated context and a set of multiple drainage system conditions in which to compare and contrast the Pre-Development 2-year and 100-year 24-hour duration design storm events to those in the Development Site Condition under the provision of Article IX, Section 15-73.B of the Ordinance. Catchment areas in the Existing Condition and in the Proposed Condition have, accordingly, been carefully crafted and delineated to make that comparison as clear and accurate as possible. # III. PROPOSED WITH-PROJECT CONDITION STORMWATER MANAGEMENT & PCBMP SYSTEMS Given the somewhat restrictive site area available and desire to create landscaped open areas for neighborhood gatherings and for outdoor educational facilities, Developer Vrutthi, LLC has elected to provide site runoff storage in sub-surface modules, as a means of stormwater management and PCBMP's, which modules will be arrayed under those open space areas within the Development Site. As these open space areas are limited in size, the storage volume required can only be attained by maximizing the depth of the modules which, in turn, requires connection to the storm sewer system with the lowest flowline and virtually all of the available open space would be utilized to accommodate 350 storage modules within the maximum depth range afforded by the existing storm sewer systems. As previously stated, a 17 foot wide ROW will be dedicated along Mill St. for construction of a public sidewalk and for a dedicated right turn lane at the proposed RI/RO driveway on Mill St. as now required by DuDOT. That right turn lane and the attendant pavement gradient sloping away from the edge of the existing pavement will divert a portion of the existing roadway and widened parkway into the Site at the RI/RO driveway. Those portions of the Site in the northeasterly corner and along the easterly fringe that formally drained to the Diehl Rd. or Mill St. drainage systems, will now be captured and conveyed to the subsurface storage modules. The existing parkway areas along Diehl Rd. and West St., which fall off rather abruptly into the Project Site and cannot be reversed without extensive adjustment and disruption to existing utility systems, will remain tributary to the Site. All of the central portion of the Site will also be captured, conveyed and managed in the storage module SWMF. A total of 0.12± Ac. + 0.36± Ac. = 0.48± Ac. of the West St. and Diehl Rd. parkways will continue to drain to the Diehl Rd. storm system. The Proposed Condition Catchment Exhibit F, Sheet 1 (attached), delineates these catchment areas and the Catchment legend quantifies those areas. The On-Site Development Area will consist of the 12.35± acre gross Site area less the 0.18± acre of existing driveway adjacent to Harborchase that was included in the stormwater management program for that project, less the 0.36± acres of the Mill St. ROW dedication, but plus the 0.09± acres the right turn lane pavement Development for a Net On-Site Development Area of 11.90± acres. Tributary to this Net On-Site Development Area will be portions of the Diehl Rd. and West St. parkways (0.50± acres) and the Mill St. pavement and parkways from the high point in the curb line south of Diehl Rd. to the RI / RO driveway (0.57± Ac. – 0.09± Ac. = 0.48± Ac.) which will be routed into the On-Site stormwater management system and partially managed and accommodated in the overflow conveyance system at 0.50± Ac. + 0.48± Ac. = 0.98± Ac. with the overflow weir discharge to occur above the elevation at which the site runoff storage volume is met in accordance with Section 15-73.A.2. Composite Coefficients of Runoff CN and Times of Concentration Tc were then computed for the School Site with gymnasium (CN = 86) and for the 76 unit Townhome Site (CN = 88) with Type C soils and Pondpack flood routing routines were devised to assess the rate of discharge to each of the three (3) storm sewer systems in the Proposed Condition compared to those discharges in the Existing Condition determined in Section II above. As the 36-inch storm sewer on Mill St. afforded the deepest flowline more conducive to deployment of storage modules at least 6-foot deep, that storm sewer system was selected as the primary point of discharge with a flowline at 721.3. A 6-foot diameter catch basin with center weir wall through which an orifice restrictor can be inserted was initially selected to achieve the restrictive discharge rate of 1.19 cfs with the top of weir wall set at the computed design HWL. As an initial trial, 350 storage modules 8-foot wide by 16-foot long by 8-foot high (7' x 15' x 6' ID) were arrayed within the available open space areas with 198 modules in the Townhome Site and 152 on the school Site with each module accommodating 676± cubic feet of storage volume (5.43± Ac.-Ft.) which, along with storage in storm sewer pipes (0.15 Ac.-Ft.) and proposed onsite depressional areas below elevation 730.0 (0.24± Ac.-Ft.), brings the total available storage volume to about 5.82± Ac.-Ft. These modules, supported on a proposed 3-foot thick bedding of CA-7 aggregate, will serve both as a PCBMP for the impervious surfaces over both Sites (6.7 Ac. x 1.25 inches = 0.70 Ac.-Ft.) and to create a contact surface with the underlying coarse sand and gravel in the 717.0 to 718.0 interface. For the 350 modules, that contact surface will amount to about 51,000 SF. Total available storage capacity from elevation 721.5 to 730.0 will then be 6.52± Ac.-Ft. per Section 15-64.C.2. Given these initial input parameters, the 11.90± acre onsite and offsite Net Project Development Site was then flood routed for the 2-year and 100-year 24-hour duration Design Storm Events in which analysis it was determined that the initially designed storage volume of 6.52 Ac.-Ft. (per the above) and a restrictive orifice of 4.25-inch diameter would be capable of attenuating discharges from the 11.90± acre Net Project Development Site alone to 1.14± cfs at a HWL of 727.9± in keeping with the provisions of Sections 15-73.A and assuming a free discharge. However, the resulting discharge to the 36-inch storm sewer from the Development Site (1.14± cfs) plus the remainder of the Mill St. roadway not intercepted by the RI / RI driveway (0.13± cfs due to time delay) for a total of 1.27± cfs would exceed the 100-year Design Storm rate of 0.73 cfs in the Existing Condition. For the 2-year Design Storm, the peak discharge plus inflow rate (0.51± cfs) would also exceed Existing Condition (0.26± cfs). Inflows to the Diehl Rd. and West St. / Diehl Rd. storm systems will be reduced or remain the same under this scenario (see Table 1 below). It is worth mentioning that the times to reach peak inflow rates in the Existing Condition occur in the 16th hour while those in the Proposed Condition occur two (2) or more hours later in the 18th hour when the peak rates of inflow will have dissipated. Also, if storm sewer <u>capacity</u> is the real issue, the 2-year and 100-year 24-hour storm events are hardly critical since the shorter duration 1-, 2-, and 3-hour storms of 2-, 5-, 10-, 25- and 100-year recurrence intervals with peaks as high as 6.5± cfs are much more taxing on the capacity of the 36-inch storm sewer. For those storms, the attenuating effect of the available storage will be much more pronounced and the discharge rates from the control structure would be less than the Existing Condition flow rates. But, if the 2-year and 100-year 24-hour duration Design Storms are the established ground rules per Section 15-72.B, then the practical solution is to design a secondary point of discharge, in this case the 15-inch West St. / Conestoga Rd. storm sewer, to distribute discharges in an effort to
replicate distributions in the Existing Condition or take into consideration allowing the rate of infiltration into the sand and gravel formation to supplement the allowable release rate. Both of these solutions were analyzed separately and in combination with each other. If both a primary (Mill St.) and secondary (West St. / Conestoga Rd.) outlet is flood routed with 350 modules but without infiltration, the 2-year and 100-year discharges would amount to 0.26± cfs and 0.71± cfs respectively, which are below inflows in the Existing Condition and, while discharges plus inflows from the 2-year and 100-year Design Storms to the West St. / Conestoga Rd. system at 0.23± cfs and 2.21± cfs are respectively less than in the Existing Condition, the total release rate of 1.19± cfs would still be exceeded. If a primary outlet alone with a 4.25-inch restrictor to Mill St. with 350 modules plus infiltration is flood routed, the 2-year and 100-year discharges plus inflows would be 0.10± cfs and 0.71± cfs respectively (or less than allowable) with all other inflows to sewer systems remaining equal to the Existing Condition. But the HWL in the storage modules would be 722.85±, utilizing only 30% or less of the available storage capacity. For the scenario with both a primary outlet and a smaller 2.75-inch diameter orifice restrictor to Mill St. and a secondary outlet connected to the 15-inch West St. Conestoga Rd. storm sewer along with 350 modules plus infiltration, a flood routing analysis indicated the 2-year and 100-year Design Storm discharges will be the same at 0.10± cfs (as there is no discharge to the higher West St. / Conestoga Rd. storm sewer flowline) and slightly lower for the 100-year Design Storm (due to the smaller orifice) but at a somewhat higher (722.93±) HWL. Again, available storage utilization would only be 30% or less. The results of these last two (2) analyses with 350 storage modules and either single or dual points of discharge plus infiltration offer a compelling rationale for reducing the number of storage modules. As a trial, an analysis of 185 storage modules was conducted with a contact area interface with the sand and gravel formation of 27,290 SF (2.27± cfs) with primary outlet (2.75-inch diameter orifice) discharging to the Mill St. system and a secondary connection to the West St. / Conestoga Rd. system with an overflow weir plate to be set at the elevation equal to the HWL. That combination of stormwater management components was then flood routed and it was determined that the total discharge plus inflow to the 36-inch Mill St. storm sewer would be 0.67± cfs for the 100-year Design Storm (vs. 0.73± cfs in the Existing Condition and below the Project Site allowable discharge of 1.19± cfs) and would still be only 0.10± cfs for the 2-year Design Storm (vs. 0.26± cfs in the Existing Condition). For the West St. / Conestoga Rd. storm sewer the peak 100-year Design Storm discharge was 0.32± cfs (or far less than the 7.91± cfs in the Existing Condition) and there will be no discharges for the 2-year Design Storm as the HWL would only reach 721.5±. The HWL for the 100-year Design Storm for this combined system will be slightly below 727.1 so there is still excess storage capacity available. This same configuration of stormwater management components was again flood routed with the internal weir plate in Control Structure #2 set at the design HWL of 727.1 and both the Net On-Site Development Area of 11.90± acres and Off-Site ROW areas of 0.98± acres were flood routed through the same Optimal system for the 2-year and 100-year Design Storms. It was determined in this analysis that the 2-year discharge plus inflow to Mill St. would still be only 0.10± cfs and the 100-year discharge plus inflows would increase slightly to 0.70± cfs while the discharges to West St. / Conestoga Rd. would remain at 0.0 cfs for the 2-year storm (HWL below the 15-inch flowline) and 0.32± cfs for the 100-year at a HWL of 727.6± over the weir (see Option F Table 1 and Exhibits F-1 and F1 & 2). In a subsequent review of this Optimal System, however, the City has determined that, while the use of infiltration to satisfy the volume and pollution control (PCBMP) provisions is accountable under the Ordinance, the City has taken the stance that they will not allow infiltration as a means of determining the volume of site runoff storage and control of release rates. The City has cited their concern that the rate of infiltration may not be sustainable over an extended period of time due, presumably, to contamination of fines into the subsurface gravelly sand formation underlying the Site. At the City's request, an alternative stormwater management system configuration of components with 360 storage modules, primarily and secondary outlets / control structures, no infiltration and with 2.75 inch (primary) and 3.6 inch (secondary) restrictors. That option also proved to satisfy all of the conditions of overall restriction to total discharge and restriction to each of the receiving storm sewer systems (see Option G Table 1 and Exhibits F-2 and F1 & 2). Table 1 below summarizes all of these combinations and permutations of stormwater management components for the Proposed Condition and compares and contrasts them to the Existing Condition. TABLE 1 Comparison of 2-Year and 100-Year 24-Hour Duration Design Storms Existing vs. Proposed Condition | FLOW RATES
(cfs) | | | STORM SEWER SYSTEM | | | | |--|--------|----------|--------------------|-----------------------------|--------------------------|--| | | | Mill St. | Diehl
Rd. | West St. /
Conestoga Rd. | West St. to
Diehl Rd. | | | Existing Condition | 2-Yr | 0.26 | 0.09 | 1.89 | 0.07 | | | | 100-Yr | 0.73 | 0.32 | 7.91 | 0.25 | | | Proposed w/ Primary Outlet & 350
Modules – No Infiltration, No ROW's | 2-Yr | 0.51 | 0.09 | 0.00 | 0.07 | | | (OPTION A) | 100-Yr | 1.27 | 0.32 | 0.00 | 0.25 | | | Proposed w/ Primary and Secondary
Outlets & 350 Modules – No | 2-Yr | 0.26 | 0.09 | 0.23 | 0.07 | | | Infiltration, No ROW's
(OPTION B) | 100-Yr | 0.69 | 0.32 | 2.21 | 0.25 | | | Proposed w/ Primary Outlet & 350
Modules plus Infiltration (4.25" | 2-Yr | 0.10 | 0.09 | 0.00 | 0.07 | | | Restrictor) No ROW's ④ (OPTION C) | 100-Yr | 0.71 | 0.32 | 0.00 | 0.25 | | | Primary and Secondary Outlets & 350 Modules plus Infiltration, No | 2-Yr | 0.10 | 0.09 | 0.00 | 0.07 | | | ROW's (2.75" Restrictor) (4) (OPTION D) | 100-Yr | 0.46 | 0.32 | 0.00 | 0.25 | | | Primary and Secondary Outlets & 185 Modules plus Infiltration, No | 2-Yr | 0.10 | 0.09 | 0.00 | 0.07 | | | ROW's (Optimal) (2.75" Restrictor)
HWL = 727.1 4 (OPTION E) | 100-Yr | 0.67 | 0.32 | 0.55 | 0.25 | | | Proposed Primary and Secondary Outlets & 185 Modules plus | 2-Yr | 0.10 | 0.09 | 0.00 | 0.07 | | | Infiltration, with ROW's (Optimal)
HWL = 727.6 ④ (OPTION F) | 100-Yr | 0.70 | 0.32 | 2.59
(3)(4) | 0.25 | | | Proposed Primary and Secondary Outlets & 360 Modules, No | 2-Yr | 0.26 | 0.09 | 0.00 | 0.07 | | | Infiltration, No ROW's (2.75" + 3.6" Restrictors) HWL = 729.9 (OPTION G) | 100-Yr | 0.68 | 0.32 | 0.60
④ | 0.25 | | - ① Exceeds the allowable Net Project Site Release Rate of 1.19± cfs - 2 Exceeds the Existing Condition Release Rate - 3 Secondary Weir Overflow due to Off-Site ROW's - Satisfies both Allowable Release and Existing Condition Rates at respective times to peak CEMCON, Ltd. As noted in the above Table 1 "Comparison of Existing vs. Proposed Condition" and the various combinations and permutations of storage module capacity, control structure configurations and infiltration that were flood routed and analyzed to derive those results, the Option F Optimal Combination of those stormwater management components to effectively and efficiently meet each of the performance criteria in keeping with the provisions of the "Stormwater Ordinance" would consist of the following: - A. Control Structure #1 with 2.75-inch circular orifice restrictor and top of weir wall set at 727.6 connected to the 36-inch Mill St. storm sewer and Control Structure #2 connected to both the internal Site storm sewer system and to the existing 15-inch West St. / Conestoga Rd. storm sewer over a top of weir plate set at 727.1. - B. 185 storage modules with 80 arrayed on the School Site and 105 on the Townhome Site. - C. Infiltration through a CA-7 aggregate base with interface at 717.5 to the existing 30-foot thick coarse sand and gravel formation with contact area at interface of 27,290± SF and preliminary design infiltration rate of 23± csf. - D. Sediment and debris traps with forebay settling chambers. Also noted in Table 1 "Comparison of Existing vs. Proposed Condition", the combination of stormwater management components in meeting the City's policy of precluding infiltration in the determination of required site runoff control storage, in Option G would consist of the following: - A. Control Structure #1 with 2.75-inch circular orifice restrictor and top of weir wall set at 729.5 connected to the 36-inch Mill St. storm sewer and Control Structure #2 with a 3.6 inch restrictor connected to the West St. / Conestoga Rd. storm sewer. - B. 360 storage modules with 154 arrayed on the School Site and 206 arrayed on the Townhome Site with a contact area at the interface of 52,460± SF with a continuing but unaccounted for preliminary design infiltration rate of 4.3± cfs. - C. Sediment and debris traps with forebay settling chambers. In the Existing Condition 11.51± acres of the On-Site Development Area and 0.50± acres of Off-Site West St. and Diehl Rd. ROW drain to the westerly Harborchase driveway. In the Proposed Condition, due to the right turn lane on Mill St., the catchment areas tributary to the On-Site stormwater management system increases to 12.88± acres including the West St. and Diehl Rd. In accordance with Section 15-73.A.2., the overflow conveyance system for
this ROW's. upstream watershed of 12.88± acres to Harborchase was analyzed for a flow of 1 cfs/Ac. x 12.88 Ac. = 12.9± cfs. The westerly and easterly driveway pavements, to which these overflows are directed in both the Existing Condition and the Proposed Condition, were modeled as weirs and it was determined that the maximum water surface elevation reached on the lower westerly driveway section to which 12.7± acres will be tributary was 730.3± while at the higher easterly driveway to which only 0.2± acres will be tributary, the peak WSEL will be 730.6±. The lowest proposed finished floors of townhomes north of the Harborchase west driveway are proposed at 732.0 so there will be 1.7± feet of freeboard at the westerly driveway and at the easterly Harborchase driveway with finished floors of 733.4 the freeboard will be 2.8± feet (see Overland Flood Route Exhibit G). The manufacturer's details for the StormCapture and StormTrap storage modules are attached to Sheet 2 of Exhibit F, along with details of Control Structure #1 and Control Structure #2. These storage modules, designed for H-20 loading, will be arrayed in mostly open space areas under playgrounds, outdoor educational facilities, light duty pavements and open space courtyards, where surface runoff and overland flows can be directed. Modules will have portals on all four sides to allow the unrestricted flow of collected runoff between modules and the module array in the School Site will be hydraulically interconnected with the two (2) module arrays on the Townhome Site (which will also be interconnected) by low flow flat gradient conduits of a size sufficient (about 24-inch diameter) to allow the unrestricted transfer of collected stormwater to equalize hydraulic elevations (i.e. an energy equalizer system – see Exhibit F, Sheets 1 & 2). A number of the modules will have surface ports with high capacity grates for the entry of local surface runoff and to intercept the overland flood routes that will be designed along street pavements and open space corridors to convey excess accumulated runoff to the three (3) subsurface storage module sites. As previously mentioned, each module will also have side-to-side and end-to-end hatchways to allow the unrestricted passage of stormwater between modules in addition to the interconnected equalizer conduits (see Illustration on Special Subsurface Modules, Exhibit F, Sheet 3). The external Project storm sewer system will be connected to end modules that will be 10-feet deep to provide a sump for collection of sediments. Those end modules will be in close proximity to paved areas to facilitate access by vac-all pump out trucks in accordance with Section 15-64.C.4. Preceding those forebay sediment traps will be large diameter catch basins with basket screens to intercept larger debris, floatables and heavier sediments (see both Details on Exhibit F1 & 2 Sheet 3). # IV. SWPP PLAN IMPLEMENTATION Erosion and sedimentation measures and devices to minimize and control erosion for the Project would consist of silt fencing, inlet and manhole filter inserts, a construction entrance off West St. to minimize traffic disruptions, a concrete wash-out facility, protective fencing for the few quality trees on the site that may form a part of the Landscaping Plan to be approved for the Project, and catch basins / debris traps. Such measures and devices would be periodically maintained during construction and vegetative stabilization established as building sites are developed. An NPDES Permit will need to be obtained for this Project which will exceed more than 1 acre. # V. STORMWATER SYSTEMS MONITORING & MAINTENANCE PLAN As there would otherwise be frequent accumulations of debris and sediments in the sub-surface storage modules, discharges into the modules would first be routed through large forebay sediment traps which would be strategically located near paved areas for access by a vac-all truck (see Exhibit F, Sheet 1), and which accumulations will need to be periodically removed and sediments vacuumed out (per the Stormwater System Monitoring & Maintenance Plan). Both the school and townhome HOA would be charged with these tasks through a Monitoring, Maintenance and Reporting Program that would be incorporated into the covenants recorded with the Plat of Subdivision against each lot. There would also be infrequent but scheduled inspections of the storage modules through access ports that would be provided at regular intervals which would allow relatively quick visual inspection without necessarily entering the modules. # VI. SPECIAL MANAGEMENT AREAS There are no wetlands or flood plains on the site either indicated on the DuPage County Wetland Maps or D-FIRM Maps (see Exhibit I) nor were wetlands inventoried in the Negative Wetland Findings Report conducted by ENCAP, Inc. (see Exhibit J). ## VII. SURETY Surety for the stormwater management components (earthwork, SWPP Plan implementation, storm sewers and drainage system improvements, storage systems, PCBMP systems, etc.) would be posted as part of the required stormwater certification for the Project. # VIII. SUMMARY & CONCLUSION The requirement to construct a right turn lane on Mill St. and the limitations on discharges to the three (3) different storm sewer systems to which the Project Site is tributary (under three (3) different jurisdictions) has further complicated an already complex stormwater management and flood routing design challenge. In order to provide the volume of stormwater storage require to attenuate discharges in conformance with those limitations, and to effectively utilize available open space areas for outdoor educational amenities and community events, Owner / Developer Vrutthi, LLC has elected to utilize sub-surface precast concrete modules that are commercially available for that purpose. A right-in turn lane on Mill St. will further divert stormwater runoff into the Site, which has now necessitated routing that 0.09± acre turn lane Development Area through the stormwater management system and which then has affected design storage capacity and discharge rates. Sub-surface soil conditions consisting of a 30± foot sand and gravel formation underlaying this Site, which is an unusual soil condition for DuPage County, affords a very effective means of not only incorporating a PCBMP into the stormwater management system, but also of enhancing the available rate of dissipation of stormwater runoff and to actually reduce existing impacts to the three (3) storm drainage systems to which this Site is tributary. The City has indicated, however, that utilizing infiltration for this purpose is not acceptable even through it will occur to one extent and another. Further soil borings and infiltrometer testing are underway and should be available in the next 2-3 weeks so those results will be available for the Final Design Phase to either support the use of infiltration to satisfy the Volume and Pollution Control provisions of Section 15-64.A.1. of the Ordinance and possibly, with City concurrence, accounting for some portion of infiltration in the determination of volume of runoff storage required. Taking into account the ability of the coarse sand and gravel formation to dissipate runoff through infiltration, an Optimal stormwater management system with safeguards and redundancies to allay concerns of long term viability can be devised that is capable of meeting in all respects the limitations on discharge and inflow to both storm sewer systems. Those safeguards and redundancies might consist of a flood routing design input of only ½ of the tested rate of infiltration or increasing the number of modules or increasing the contact surface area at the interface to be twice as much as theoretically needed which could collectively provide a factor of safety of four (4) or more along with the gravity outlets which will also provide a degree of redundancy to the design of the stormwater management system. A number of flood routing iterations were conducted as part of this Preliminary Stormwater Management Analysis & Report, with different combinations and permutations of storage modules, single or dual control structure outlets and with and without accounting for infiltration which results are quantified in Table 1 found on page 9 of this Report, which provides to the City multiple options and the range of components that can be deployed in compliance with the complex and multiple drainage system conditions that exist at the subject Site as described in Section II on Page 4. Of those combinations of components, two (2) were found to achieve each of the restrictive rates of release to the adjacent storm sewer systems, all be it with one (1) – Option F with only 185 storage modules and another – Option G – with 360 storage modules as depicted on Exhibit F-1 and F1 & 2 and on F-2 and F1 & 2. These are both presented in this Report for consideration by the City. The PCBMP volume and pollutant control requirements under Article VIII of the "Ordinance" can be provided using one of the practices listed under Section 15-64.A. as cited below: **15-64.** Post Construction Best Management Practices Design Criteria. **15-64.A PCBMPs** shall provide volume and pollutant control using one of the following practices: **15-64.A.1** Infiltration of 1.25 inches for all new impervious surfaces; or **15-64.A.2** Native vegetated wetland bottom site runoff storage basin; or Notably, one of those practices under paragraph 15-64.A.1 provides for infiltration of 1.25 inches of runoff for all new impervious surfaces, but it does not state or imply that infiltration is <u>limited</u> to 1.25 inches. Table 1 demonstrates conclusively that, for the 2-year 24-hour duration Design Storm of 3.34 inches, there is no discharge through either control structure to the outlet storm sewer systems which means that a volume of rainfall of at least 1.25 inches over the 6.7± acres of impervious surfaces (6.7±
acres x 1.25 inches = 0.70± Ac.-Ft.) will be dissipated through infiltration. In concert with the stormwater management components described above for the Option G or Option F, those combinations of components will also control and restrict aggregate discharges to the receiving storm sewer systems below the allowable rate of 1.19 cfs to the extent that discharges plus inflows from the off-site rights-of-way will also be less (in some cases far less) than in the Existing Condition for the 2-year and 100-year Design Storms. Subject to further soil testing and establishment of design parameters for the Final Design Phase, the sub-surface geological conditions underlying the Prosperita & Orion STEM School Site and the thoroughgoing Preliminary Flood Routing Analyses described herein for this, the Preliminary Design Phase, affords to the City of Naperville and DuPage County DOT a compelling rationale to conclude that the Optimal 185 storage module stormwater management system with dual control structures and infiltration proposed will be fully capable of providing a functionally effective Volume and Pollution Control PCBMP and a Site Runoff Conveyance System in accordance with Article VIII and Article IX of the Ordinance. If infiltration cannot be counted in the determination of site runoff storage, then Option F can be deployed. Infiltration that achieves the Volume and Pollution Control functions will also afford the means of supplementing sub-surface dissipation of runoff, whether or not the City recognizes that infiltration will continue to occur. We request the City maintain an open mind on these alternatives. H:\904426\REPORTS\2023-06-05 Revised Preliminary Final SWM Analysis & Report.docx # TAB 1 # PROJECT OVERVIEW # **EXHIBIT A** LOCATION MAP # The Prosperita & Orion STEM School T38N, R9E, SEC. 1 NAPERVILLE QUADRANGLE PROJECT / CLIENT: Vrutthi, LLC. 3644 White Eagle Drive Naperville, IL 60564 (630) 803-5768 | DRAWN BY: | DJF | 08-30-22 | |-------------|-----|----------| | CHECKED BY: | | | | | | | APPROVED: SCALE: N.T.S. # **EXHIBIT B** # PRELIMINARY SITE DEVELOPMENT PLAN AND PRELIMINARY PLAT OF SUBDIVISION # **EXHIBIT C** # SOILS INVESTIGATION REPORT BY RUBINO ENGINEERING, INC. AND ADDENDUM LETTER WITH INFILTRATION RATES ## ADDENDUM LETTER April 12, 2023 To: Selvei Rajkumar Vrutthi LLC & Brio Estates LLC 2719 Beebe Drive Naperville, Illinois 60564 Ph: (630) 803-5768 Re: Preliminary Estimate of Infiltration Rate Proposed Townhomes & STEM Academy SW Corner Diehl Road and Mill Street Naperville, Illinois 60563 Rubino Project No. G22.148 Addendum REV2 Via email: selvei.rajkumar@gmail.com Dear Ms. Rajkumar, Rubino Engineering, Inc. (Rubino) is submitting this revised addendum letter in response to the request for preliminary estimate of infiltration rate at the above referenced site. # **Project Information and Correspondence** Rubino Engineering, Inc. submitted a preliminary geotechnical engineering report for the Proposed Townhomes & STEM Academy, Rubino Project No. G22.148 dated August 19, 2022. This addendum provides a preliminary estimate of the infiltration rate for the native predominantly granular soils. These predominantly granular strata were encountered at approximate elevations ranging from EL. 723 $\frac{1}{2}$ to EL. 720 feet. Underground stormwater management is planned for the subject site. # Preliminary Infiltration Rate Discussion Soil samples from the preliminary geotechnical exploration were used to run grain-size lab tests as follows: - Laboratory Determination of Amount of Material Finer than No. 200 Sieve (Washed Sieve) Analysis of Soils (ASTM D1140) - Laboratory Determination of Particle Size Analysis of Soils (No Hydrometer) (ASTM D422) Subsequently, these soils were characterized by the USDA soil texture classification in order to estimate the infiltration rates. The results are plotted in the attachment, Washed Sieve Analysis. The following table includes soil classifications based on USDA and estimates of the design infiltration rates for soils based on USDA soil texture classification (Univ. of Wisconsin, Madison, 2006). The IDH Classification Triangle from the previous Addendum dated December 13, 2022 has been replaced with the USDA Textural Classification Chart (see following page). The results are similar (see following page). | KEY | Boring | APPROXIMATE ELEVATION (FEET) | USDA SOIL TEXTURE CLASSIFICATION | DESIGN INFILTRATION RATE (IN/HR) | |-----|--------|------------------------------|----------------------------------|----------------------------------| | • | B-03 | 719 | Loamy Sand | 1.63 | | | B-07 | 720 | Sand | 3.60 | | | B-12 | 719 | Sand | 3.60 | | USDA Soil Texture | Design Infiltration Rate
(in/hr) | |-------------------|-------------------------------------| | Sand | 3.60 | | Loamy Sand | 1.63 | | Sandy Loam | 0.50 | | Loam | 0.24 | | Silt Loam | 0.13 | | Sandy Clay Loam | 0.11 | | Silty Clay Loam | 0.19 | | Clay Loam | 0.03 | | Sandy Clay | 0.04 | | Silty Clay | 0.07 | | Clay | 0.07 | ## **Discussion and Limitations** The infiltration rates in the table above are estimates based upon empirical data and classifications. The presence of groundwater at or just below the design infiltration elevation can significantly lower (or eliminate) the infiltration rate. Groundwater was not encountered in the borings at the time of the preliminary geotechnical exploration. During the spring groundwater levels typically exhibit the highest elevations. At this time, Rubino recommends a site mobilization for the following purposes: - Installation of a minimum of two piezometers to measure the groundwater level - Perform the outstanding soil borings and additional laboratory grain size analyses - Perform an in-situ infiltration test to measure the infiltration rate into the native granular soils (if a sustained water level can be achieved in the test pipe) Rubino Engineering, Inc. • 425 Shepard Drive • Elgin, IL 60123 • (847) 931-1555 • (847) 931-1560 fax # Closing All terms, conditions, and recommendations from Rubino Report Number G22.148 dated August 19, 2022, remain in effect unless explicitly addressed in this addendum letter. Rubino appreciates the opportunity to continue providing services for this project. If you have questions pertaining to this report, or if Rubino may be of further service, please contact our office at (847) 931-1555. Respectfully Submitted, Rubino Engineering, Inc. David T. Lewandowski, P.E David T. Jewardowski Senior Engineer Michelle Lipinski, P.E President Attachment: Washed Sieve Analyses Boring Location Plan Boring Logs B-03, B-07, and B-12 PROPOSED TOWNHOMES & STEM ACADEMY **DIEHL ROAD AND MILL STREET** Naperville, Illinois **RUBINO PROJECT No. G22.148** Preliminary Geotechnical Engineering Services Report Drilling Laboratory Testing Geotechnical Analysis ## PREPARED BY: DAVID LEWENDOWSKI, PE Michelle A. Lipinski, PE President IL No. 062-061241, Exp. 11/30/23 PREPARED FOR: **VRUTTHI LLC & BRIO ESTATES LLC** 2719 BEEBE DRIVE NAPERVILLE, ILLINOIS **AUGUST 19, 2022** # **TABLE OF CONTENTS** | PROJECT INFORMATION | 1 - | |--|--------------------| | Purpose / Scope of Services | | | DRILLING, FIELD, AND LABORATORY TEST PROCEDURES | 3 - | | SUMMARY OF GEOTECHNICAL CONSIDERATIONS | 4 - | | SITE AND SUBSURFACE CONDITIONS | 4 - | | SITE LOCATION AND DESCRIPTION SUBSURFACE CONDITIONS Table 2: Subsurface Conditions Summary GROUNDWATER CONDITIONS | 5 -
6 - | | PRELIMINARY EVALUATION AND RECOMMENDATIONS | 7 - | | TOPSOIL DISCUSSION EXPANSIVE SOIL DISCUSSION Table 3: Expansive Soils by Location SITE PREPARATION RECOMMENDATIONS PRELIMINARY SHALLOW FOUNDATION RECOMMENDATIONS Design - Soil Bearing Pressure Design / Construction - Frost Protection Design - Settlement Estimate DEWATERING RECOMMENDATIONS SEISMIC SITE CLASSIFICATION UTILITY INSTALLATION AND BACKFILL RECOMMENDATIONS RECOMMENDATIONS FOR ADDITIONAL TESTING | 7 8 8 8 9 9 9 10 - | | Appendix A – Drilling, Field, and Laboratory Test Procedures Appendix B – Site Preparation – Clearing & Grubbing Appendix C – Fill Recommendations Appendix D – Foundation Construction Recommendations Appendix E – Report Limitations Appendix F – Soil Classification General Notes Appendix G – Soil Classification Chart Appendix H – Site Vicinity Map & Boring Location Plan Appendix I – Borings Logs Appendix J – Laboratory Test Results | | # PROJECT INFORMATION Rubino Engineering, Inc. (Rubino) understands that Vrutthi is planning to construct a townhome development at the southern half of the site. In addition, Brio Estates is planning to build a STEM Academy at the northern part of the site. The proposed townhome structures will be 3-stories in height with probable slab-on-grade construction. Each townhome unit will have dimensions of 20 feet by 40 feet with an attached 2-car garage. One townhome building will include 3 or 5 townhome units. Therefore, a 3-unit building will have plan dimensions of 40 feet by 60 feet and 5-unit building will be 40 feet by 100 feet. Per the preliminary site plan, there will be a total of 17 buildings in the new development. The proposed school building will be 2-stories in height with probable slab-on-grade construction. The building is a V-shape. The plan area is on the order of 15,000 to 20,000 square feet. A Draft Site Plan provided by the client is shown in the image below. # A site grading plan was not received but is based on the following: - Site grading including cuts being less than 2 feet and fills being less
than 2 feet. - Finished floor elevations of proposed buildings not available at the time of this preliminary report. # Structural loads were not received; however, this report is based on the following: - Individual column loads not exceeding 100 kips - Bearing wall loads not exceeding 5 kips per lineal foot (klf) - Grade-supported slab live loads not exceeding 125 psf. - Site grading including cuts and fills being less than 2 feet #### **Documents received:** - Preliminary Site Plan received from Vrutthi LLC & Brio Estates LLCon July 13, 2022 - Draft Site Plan received from Vrutthi LLC & Brio Estates LLC on July 27, 2022 - Topographic Survey received from Cemcon, Ltd., prepared by Cemcon, dated July 8, 2022 # **Project Correspondence:** - RFP phone call from Selvei Rajkumar of Vrutthi LLC & Brio Estates LLCon July 19, 2022 - Authorization to proceed in the form of signed Proposal No. Q22.256g_REV2 on July 23, 2022 - Structural loads not provided to date The preliminary geotechnical recommendations presented in this report are based on the available project information and the subsurface materials described in this report. If any of the information on which this report is based is incorrect, please inform Rubino in writing so that we may amend the recommendations presented in this report (if appropriate, and if desired by the client). Rubino will not be responsible for the implementation of our recommendations if we are not notified of changes in the project. # Purpose / Scope of Services The purpose of this study was to explore the subsurface conditions at the site in order to prepare preliminary geotechnical recommendations for foundation design and general site development for the proposed construction. Rubino's scope of services included the following drilling program: Table 1: Drilling Scope | NUMBER OF BORINGS | DEPTH
(FEET BEG*) | LOCATION | |----------------------------|----------------------|-----------------------| | B-03, B-07, B-12, and B-16 | 25 | Proposed Townhomes | | B-19 | 25 | Proposed STEM Academy | ^{*}BEG = below existing grade Representative soil samples obtained during the field exploration program were transported to the laboratory for additional classification and laboratory testing. This preliminary report briefly outlines the following: - Summary of client-provided project information and report basis - Overview of encountered subsurface conditions - Overview of field and laboratory tests performed including results - Preliminary geotechnical recommendations pertaining to: - Subgrade preparation and cut / fill recommendations - Foundations, including suitable foundation type(s), allowable bearing pressure(s), and estimated settlement - Seismic design site classification parameters per International Building Code (IBC) 2018 - Utility Installation and backfill recommendations - Dewatering - Construction considerations, including temporary excavation and construction control of water # DRILLING, FIELD, AND LABORATORY TEST PROCEDURES Rubino selected the number of borings and the boring depths. Rubino located the borings in the field based on the Draft Site Plan and existing aerial imagery (Google Earth Pro). Rubino generated GPS coordinates for the boring locations. Subsequently, Rubino staked the borings with a manual GPS device. The borings were advanced utilizing 3 ¼ inch inside-diameter, hollow stem auger drilling methods and soil samples were routinely obtained during the drilling process. Selected soil samples were tested in the laboratory to determine material properties for this report. Drilling, sampling, and laboratory tests were accomplished in general accordance with ASTM procedures. The following items are further described in the Appendix of this report. - Field Penetration Tests and Split-Barrel Sampling of Soils (ASTM D1586) - Field Water Level Measurements - Laboratory Determination of Water (Moisture) Content of Soil by Mass (ASTM D2216) - Laboratory Determination of Atterberg Limits (ASTM D4318) - Laboratory Organic Content by Loss on Ignition (ASTM D2974) The laboratory testing program was conducted in general accordance with applicable ASTM specifications. The results of these tests are to be found on the accompanying boring logs located in the Appendix. # **SUMMARY OF GEOTECHNICAL CONSIDERATIONS** The main geotechnical design and construction considerations at this site are: ## SUBSURFACE SOILS Subgrade soils generally consisted of natural brown to gray, stiff to very stiff silty clay soils underlain by medium dense to dense, occasionally very dense, granular soils. However, strata of high plasticity clay soils were encountered in the upper profile in two borings. See the <u>Subsurface Conditions</u> and <u>Expansive Soil Discussion</u> sections for more detailed information. # **BUILDING STRUCTURE** • **Shallow Foundations** are a possible foundation design option at this site with the possibility of undercuts. See *Foundation Recommendations* section for more detailed information. The geotechnical-related preliminary recommendations in this report are presented based on the subsurface conditions encountered and Rubino's understanding of the project. Should changes in the project criteria occur, a review must be made by Rubino to determine if modifications to our recommendations will be necessary. # SITE AND SUBSURFACE CONDITIONS # Site Location and Description The subject site is located southwest of the intersection of N. Mill Street and Diehl Road in Naperville, Illinois. The site is reported to be about 12 $\frac{1}{2}$ acres in area. Per Google Earth Pro imagery dating back to the year 1994, the site was undeveloped and covered with trees and vegetation. Per the Topographic Survey provided, the elevations range from approximately EL. 738 feet at the northeast site corner to about EL. 728 feet at the southwest site corner. Therefore, the terrain slopes generally downward to the south / southwest. An aerial image from Google Earth Pro is shown on the following page. The midpoint of the project site has an approximate latitude and longitude of 41.7998° and -88.1560°, respectively. # **Subsurface Conditions** - The **topsoil** thickness ranged between 2 and 14 inches - The native **silty clay** soils were generally stiff to very stiff in consistency - The native silt soils were generally stiff to very stiff in consistency - The **granular** soils were generally medium dense to very dense in apparent density Table 2: Subsurface Conditions Summary | ELEVATION
RANGE
(FEET) | SOIL DESCRIPTION | SPT N-
VALUES
(BLOWS
PER FOOT) | MOISTURE
CONTENT
(%) | ESTIMATED
SHEAR
STRENGTH | | | | | | |--|--|---|----------------------------|--------------------------------|--|--|--|--|--| | Borings B-03, B-07, B-12, B-16, and B-19 | | | | | | | | | | | 731 - 720 | Stiff to very stiff, light brown and brown silty CLAY | 8 - 20 | 12 - 21 | c = 1,200 to
3,000 psf | | | | | | | 730 – 727 ½ | Stiff, dark brown-black silty CLAY (B-19) | 10 - 11 | 19 - 27 | c = 1,500 to
1,650 psf | | | | | | | 730 - 725 | Stiff to very stiff, brown / brown and gray HIGH PLASTICITY SILTY CLAY | 10 - 22 | 21 - 27 | c = 1,500 to
3,000 psf | | | | | | | 728 ½ – 720 ½ | Stiff to very stiff, light brown SILT | 12 - 20 | 9 - 20 | c = 1,800 -
3,000 psf | | | | | | | 9 ½ - 25 | Medium dense to very dense brown gravelly SAND to SAND | 16 – 50+ | 3 - 8 | φ = 32° - 45° | | | | | | ^{*}BEG = Below existing grade The native soils were visually classified as silty clay (CL), high plasticity silty clay (CH), silt (ML), and poorly graded sand (SP) according to the Unified Soil Classification System (USCS). The above table is a general summary of subsurface conditions. Please refer to the boring logs for more detailed information. Estimated shear strength of clay soils is based on empirical correlations using N-values, moisture content, and unconfined compressive strength. #### **Groundwater Conditions** Groundwater was not observed in the borings during the soil sampling operations. It should be noted that elevated moisture contents were found in some of the silty clay and silt soils at an approximate depth range of 6 to 10 feet BEG (EL. 726 - 721± feet). These moisture conditions may indicate that the soils are saturated. Water may seep into open trenches where saturated soils are encountered. It should be noted that fluctuations in the groundwater level should be anticipated throughout the year depending on variations in climatological conditions and other factors not apparent at the time the borings were performed. Groundwater may not have been observed in some areas due to the low permeability of soils. Additionally, discontinuous zones of perched water may exist within the soils. The possibility of groundwater level fluctuation should be considered when developing the design and construction plans for the project. #### PRELIMINARY EVALUATION AND RECOMMENDATIONS The geotechnical-related preliminary recommendations in this report are presented based on the subsurface conditions encountered and Rubino's understanding of the project. Should changes in the project criteria occur, a review must be made by Rubino to determine if modifications to our recommendations will be necessary. #### **Topsoil Discussion** Topsoil materials as described in this report have not been analyzed for quality according to any minimum specifications. If topsoil is to be imported to or exported from this site, Rubino recommends that it meet the minimum specifications defined in **Section 1081.05** of the, "Standard Specifications for Road and Bridge Construction," adopted by the Illinois Department of Transportation, January 1st, 2022. Rubino has reported topsoil thicknesses at each boring based on visual observation of surficial soils. Surficial topsoil
thickness was visually observed to be between approximately 10 and 14 inches at most boring locations. #### **Expansive Soil Discussion** Soils with moderate expansive properties were observed in B-12 and B-19 to elevations ranging from $660 \frac{1}{2}$ - 654 feet (approximately $\frac{1}{4}$ to 7 feet below existing grade) during the drilling operations. There is a possibility that expansive soils could be encountered at other locations on the site. Rubino recommends that the outstanding borings on the Boring Location Plan in the Appendix be completed prior to final design and construction. Table 3: Expansive Soils by Location | BORING No. /
LOCATION | SOIL DESCRIPTION | ELEVATION
RANGE
(FEET) | LIQUID
LIMIT
(LL) | PLASTICITY INDEX (PI) | |--------------------------|--|------------------------------|-------------------------|-----------------------| | B-12 | Very stiff, brown HIGH PLASTICITY SILTY CLAY | 730 – 726 ½ | 54 | 26 | | B-19 | Stiff, brown and gray HIGH PLASTICITY SILTY CLAY | 727 - 725 | 57 | 28 | Expansive soils are considered unsuitable for construction due to their tendency to absorb moisture from the ground or atmosphere which causes swelling and, in turn, an increase in volume. Soils with Liquid Limits greater than 50% (LL > 50%) may exhibit highly plastic behavior and may be considered to have expansive properties (IDOT Manual 2015). Expansive soils have high frost susceptibility and may have higher moisture contents which could contribute to failed proof-rolls, however expansive soils are difficult to visually delineate in the field during construction. For that reason, **Rubino recommends that surface and subsurface drainage plans be designed to mitigate moisture changes of the soil during operation of the roadway.** Where expansive soils are encountered, subgrade treatment options may include, but are not limited to: - Provide surface and subsurface drainage techniques to reduce moisture changes in the soil. - Removal and replacement (recommendations presented herein) - Treatment with additives (such as lime stabilization) to reduce the plasticity of the material #### Site Preparation Recommendations The following comments are considered site-specific. To reference general subgrade preparation recommendations and compaction recommendations, please refer to the Appendix of this report. - During construction, the site should be stripped of existing concrete, foundations, abandoned utilities, and pavement sections including asphalt, subbase, and curbs if applicable. - The presence of high plasticity soils in the upper soils may require undercutting and replacement or chemical treatment to achieve stability for fill placement or support of structural elements. - Please note that silty clay subgrade soils are sensitive to moisture and can be easily disturbed by precipitation, groundwater, or construction equipment. Therefore, extra care should be used to avoid disturbing these soils during construction activities. #### **Preliminary Shallow Foundation Recommendations** #### Design – Soil Bearing Pressure Based the borings performed up to this point, the proposed structures can be supported on shallow, spread footing foundations. Rubino recommends that foundations extend through high plasticity clays and be supported on the natural stiff to very stiff silty clay soils or compacted and documented structural fill over suitable natural soils. Preliminary bearing capacities range from approximately 2,500 to 4,000 psf. Additional borings in the individual building plans and final grades are required to provide allowable bearing pressures for specific structures. Maximum net allowable soil bearing pressures based on dead load plus design live load for sizing the shallow foundations. #### Design / Construction – Frost Protection **Exterior footings** should be located at a depth of at least 3 ½ feet below the outside final exterior grades to provide adequate frost protection. If the building is constructed during winter months or if the footings will likely be subjected to freezing temperatures after construction is completed, then the footings should be protected from freezing. **Interior footings** should be founded at least 2 feet below the final floor slab level for proper confinement of the bearing soils or as recommended above. Both depths should bear on soils described above. • Fine-grained soils such as silts and clays are susceptible to moisture fluctuations and freezing weather, therefore concrete for the foundations should ideally be poured right after the foundations have been dug and formed if rain is being predicted. Otherwise, foundations that have already been excavated should be protected from rain or surface runoff water. #### Design – Settlement Estimate Given that final grades and structural loading are not available at the time of this preliminary report, settlement estimates cannot be provided at this time. Once the aforementioned data is available and additional borings are performed, settlement analyses can be performed. #### **Dewatering Recommendations** Dewatering may be necessary during excavation of soils due to precipitation, surficial runoff, and the presence of sand seams or other conditions not apparent at the time of drilling. Shoring or trench boxes may be required where the soils are granular, saturated, or have low shear strengths. Please reference the anticipated groundwater levels on the attached boring logs and in the <u>Groundwater Conditions</u> section of this report. Additional borings across the site may provide more information about the likelihood of groundwater infiltration. #### Seismic Site Classification Per the City of Naperville website, the 2018 International Building Code (IBC) is in use. IBC 2018 requires a site class for the calculation of earthquake design forces. This class is a function of soil type (i.e., depth of soil and strata types). Given the limited number of borings and the absence of final grades, Site Class "D" is the preliminary recommendation for the proposed structures at this site. After additional borings are performed in the proposed building plans and a site grading plan is provided, analyses can be performed to more accurately determine the site class. #### Utility Installation and Backfill Recommendations If granular material is used for the backfill of the utility trench, the **granular material should have** a gradation that will filter protect the backfill material from the adjacent soils. If this gradation is not available, a geosynthetic non-woven filter fabric should be used to reduce the potential for the migration of fines into the backfill material. Granular backfill material shall be compacted to meet requirements outlined in Appendix C. #### Recommendations for Additional Testing Given the size of the site and the numerous proposed structures, Rubino recommends that the outstanding borings on the Boring Location Plan in the Appendix be completed. The additional subsurface data from the borings will allow Rubino to more accurately provide foundation recommendations for the proposed structures. These recommendations would be provided in a final geotechnical report. In addition, once the structural loads and grading plan are finalized, please notify Rubino so that we can review our preliminary recommendations and use the additional subsurface data for the direct use of the structure and development of the site. Changes in building locations, foundation depth, and structural loading can affect the geotechnical recommendations for this site. During construction, Rubino recommends that one of our representatives be onsite for typical **observations and documentation** of exposed subgrade for trench excavation, support of floor slabs, and foundations, including proofrolling and penetrometer testing. #### CLOSING The preliminary recommendations submitted are based on the available subsurface information obtained by Rubino Engineering, Inc. and design details furnished by Vrutthi LLC & Brio Estates LLC for the proposed project. Rubino recommends that the outstanding borings be completed to better evaluate the subsurface conditions for the proposed structures at this site. Subsequently, a final geotechnical report can be issued. If there are any revisions to the plans for this project or if deviations from the subsurface conditions noted in this preliminary report (or final report) are encountered during construction, Rubino should be notified immediately to determine if changes in the foundation recommendations are required. If Rubino is not retained to perform these functions, we will not be responsible for the impact of those conditions on the project. The scope of services did not include an environmental assessment to determine the presence or absence of wetlands, or hazardous or toxic materials in the soil, bedrock, surface water, groundwater or air on, below, or around this site. Any statements in this report and/or on the boring logs regarding odors, colors, and/or unusual or suspicious items or conditions are strictly for informational purposes. After the plans and specifications are more complete, the geotechnical engineer should be retained and provided the opportunity to review the final design plans and specifications to check that our engineering recommendations have been properly incorporated into the design documents. At this time, it may be necessary to submit supplementary recommendations. This report has been prepared for the exclusive use of Vrutthi LLC & Brio Estates LLC and their consultants for the specific application to the proposed Townhomes and STEM Academy in Naperville, Illinois. ### Appendix A - Drilling, Field, and Laboratory Test Procedures #### ASTM D1586 Penetration Tests and Split-Barrel Sampling of Soils During the sampling procedure, Standard Penetration Tests (SPT's) were performed at regular intervals to obtain the
standard penetration (N-value) of the soil. The results of the standard penetration test are used to estimate the relative strength and compressibility of the soil profile components through empirical correlations to the soils' relative density and consistency. The split-barrel sampler obtains a soil sample for classification purposes and laboratory testing, as appropriate for the type of soil obtained. #### Water Level Measurements Water level observations were attempted during and upon completion of the drilling operation using a 100-foot tape measure. The depths of observed water levels in the boreholes are noted on the boring logs presented in the appendix of this report. In the borings where water is unable to be observed during the field activities, in relatively impervious soils, the accurate determination of the groundwater elevation may not be possible even after several days of observation. Seasonal variations, temperature and recent rainfall conditions may influence the levels of the groundwater table and volumes of water will depend on the permeability of the soils. #### **Ground Surface Elevations** The Topographic Survey was prepared by Cemcon. Rubino interpolated the ground surface elevations at the boring locations from this figure. #### ASTM D2216 Water (Moisture) Content of Soil by Mass (Laboratory) The water content is an important index property used in expressing the phase relationship of solids, water, and air in a given volume of material and can be used to correlate soil behavior with its index properties. In fine grained cohesive soils, the behavior of a given soil type often depends on its natural water content. The water content of a cohesive soil along with its liquid and plastic limits as determined by Atterberg Limit testing are used to express the soil's relative consistency or liquidity index. #### ASTM D2974 Standard Test Method for Organic Soils using Loss on Ignition (Laboratory) These test methods cover the measurement of moisture content, ash content, and organic matter in peats and other organic soils, such as organic clays, silts, and mucks. Ash content of a peat or organic soil sample is determined by igniting the oven-dried sample from the moisture content determination in a muffle furnace at 440°C (Method C) or 750°C (Method D). The substance remaining after ignition is the ash. The ash content is expressed as a percentage of the mass of the oven-dried sample. 2.4 Organic matter is determined by subtracting percent ash content from 100. #### ASTM D4318 Atterberg Limits (Laboratory) Atterberg limit testing defines the liquid limit (LL) and plastic limit (PL) states of a given soil. These limits are used to determine the moisture content limits where the soil characteristics changes from behaving more like a fluid on the liquid limit end to where the soil behaves more like individual soil particles on the plastic limit end. The liquid limit is often used to determine if a soil is a low or high plasticity soil. The plasticity index (PI) is difference between the liquid limit and the plastic limit. The plasticity index is used in conjunction with the liquid limit to determine if the material will behave like a silt or clay. ## Appendix B - Site Preparation - Clearing & Grubbing Rubino recommends that unsuitable soils or fill be removed from the site, as applicable. Unsuitable soils or fills can be described as, but are not limited to: - organic soil / topsoil / plants / trees / shrubs / grass - frozen soil - existing asphalt or concrete pavement sections - existing foundations - building debris - existing curbs Stripping operations should extend a minimum of: **10** feet beyond proposed building limits and **5** feet beyond proposed pavement limits Exceptions: where property limits allow. Notify geotechnical engineer if there are property boundary limitations. Stripping operations should be monitored and documented by a representative of the geotechnical engineer at the time of construction. #### **Proofrolling:** After stripping and excavating to the proposed subgrade level, as required, the floor slab areas should be proof-rolled and scarified and compacted to at least 95 percent of the standard Proctor maximum dry density ASTM D 698 for a depth of at least 8 inches below the surface during a period of dry weather. #### Benefits of Proofrolling: - Aids in providing a firm base for compaction of fill soils - Helps to delineate soft, loose, or disturbed areas that may exist below subgrade level. #### Subgrade Stability: Soils which are observed to rut or deflect excessively (<u>typically greater than 1 inch</u>) under the moving load should either be scarified and re-compacted, or undercut and replaced. Subgrade soils may be **stabilized** by one of the following **options**: - **Scarifying and re-compacting** the existing subgrade soil to at least 95% compaction per ASTM D698 Standard Proctor (12-inch depth). - **Remove and replace** with non-woven filter fabric and 3-inch stone capped with CA-06 stone. - A layer of non-woven filter geotextile should be placed between silty clay soil and an opengraded stone. - The contractor can also attempt to stabilize the existing subgrade in place by "losing" 3-inch stone into the subgrade until the until the voids of the 3-inch stone are filled with the soft soil and the subgrade "locks up," showing minimal deflection under a proof-roll. - **Geogrid and a stone mat** per manufacturer's installation specifications could reduce the amount of stone required and provide additional lateral support for foundation loads in service. - Lime or other chemical additive stabilization (12 to 14 inches). This can be done as part of a lift structure. Compaction requirements still apply. ## Proofrolling Equipment: Tandem-axle dump truck or similar rubber-tired vehicles are acceptable and should be <u>loaded</u> with at least 9 tons per axle. ## Appendix C - Fill Recommendations #### In general, fill materials should meet the following: - Standard Proctor maximum dry density >100 pcf - Free of organic or other deleterious materials - Have a maximum particle size no greater than 3 inches - Have a liquid limit <45 and plasticity index <25 - Testing should include areas at least 5 feet outside the parking area perimeters, if applicable - Each lift of compacted, engineered fill should be tested and documented by a representative of the geotechnical engineer prior to placement of subsequent lifts #### **Suitable Soil Classifications:** CL, SC, GW, and SW will generally be suitable for use as structural fill under pavements. #### <u>Unsuitable Soil Classifications:</u> OL, OH, MH, ML, SM, CH and PT should be considered unsuitable. - If a fine-grained silt or clay soil is used for fill (CL or ML), close moisture content control will be essential to achieve the recommended degree of compaction - If water must be added, it should be uniformly applied and thoroughly mixed into the soil by disking or scarifying Structural fill added to the site shall be evaluated in accordance with the following table: | MATERIAL TESTED | PROCTOR
TYPE*-1 | MIN %
DRY
DENSITY | PLACEMENT MOISTURE CONTENT RANGE | FREQUENCY OF TESTING*-2 | MAXIMUM
LOOSE LIFT
HEIGHT | |---|--------------------|-------------------------|----------------------------------|--|---------------------------------| | Structural Fill (Cohesive & Well-
graded Granular) | Standard | 98% | -2 to +3 % | 1 per 2,500 yd ² of fill placed | 8 inches | | Random Fill (non-load bearing) | Standard | 95% | -3 to +3 % | 1 per 5,000 yd²
of fill placed | 8 inches | | Utility Trench Backfill | Standard | 95% | -2 to +2 % | 1 per 50 LF of fill placed | 6 inches | ^{*-1} The test frequency for the laboratory reference shall be one laboratory Proctor or Relative Density test for each material used on the site. If the borrow or source of fill material changes, a new reference moisture/density test should be performed. Tested fill materials that do not achieve either the required dry density or moisture content range shall be recorded, the location noted, and reported to the Contractor and Owner. A re-test of that area should be performed after the Contractor performs remedial measures. The above test frequencies should be discussed with the contractor prior to starting the work. The geotechnical engineer of record can only certify work that was performed under their direct observation, or under the observation of a competent person under their specific direction. ^{*-2}A minimum of one test per lift is recommended unless otherwise specified. ## Appendix D - Foundation Construction Recommendations Rubino recommends that soils at the bottom of the footing design elevation be observed, documented, and tested by a representative of Rubino prior to concrete placement to evaluate the consistency of the soils in the field with the geotechnical report findings. The remedial procedures described in the following paragraph can be used to provide suitable foundation support where unsuitable material such as soft or loose soils, existing fill, or organic soils are encountered. After opening, footing excavations should be observed and concrete placed as quickly as possible to avoid exposure of the footing bottoms to wetting and drying. Surface runoff water should be drained away from the excavations and not be allowed to pond. If possible, the foundation concrete should be placed during the same day the excavation is made. If it is required that footing excavations be left open for more than one day, the soils in the excavation should be protected to reduce evaporation or entry of moisture. If unsuitable bearing soils are encountered in a footing excavation, the footing should be deepened to competent bearing soil and the footing could be lowered, or an over excavation and backfill procedure could be performed. If an
over excavation and backfill procedure will be utilized, it would require widening the deepened excavation in all directions at least 8 inches beyond the edges of the footing for each 12 inches of over excavation depth (See "Over Excavation and Backfill Procedure" diagram below). The over excavation should then be backfilled in a maximum of 8-inches thick loose lifts with suitable granular fill material, such as $\frac{3}{4}$ -inch stone with fines (CA-6), compacted to at least 98% of the maximum Standard Proctor dry density (ASTM D 698). Another alternative is to undercut and refill the unsuitable area with flowable mortar up to the design elevation of the footings. The flowable mortar would serve as a protection to the subgrade during construction of the foundations. In this case, widening the footings is not necessary. ## Over Excavation and Backfill Procedure * Drawing not to scale ## Appendix E - Report Limitations #### Subsurface Conditions: The subsurface description is of a generalized nature to highlight the major subsurface stratification features and material characteristics. The boring logs included in the appendix should be reviewed for specific information at individual boring locations. These records include soil descriptions, stratifications, penetration resistances, locations of the samples and laboratory test data as well as water level information. The stratifications shown on the boring logs represent the conditions only at the actual boring locations. Variations may occur and should be expected between boring locations. The stratifications represent the approximate boundary between subsurface materials and the actual transition between layers may be gradual. The samples, which were not altered by laboratory testing, will be retained for up to 60 days from the date of this report and then will be discarded. #### Geotechnical Risk: The concept of risk is an important aspect of the geotechnical evaluation. The primary reason for this is that the analytical methods used to develop geotechnical recommendations do not comprise an exact science. The analytical tools that geotechnical engineers use are generally empirical and must be used in conjunction with engineering judgment and experience. Therefore, the solutions and recommendations presented in the geotechnical evaluation should not be considered risk-free, and more importantly, are not a guarantee that the interaction between the soils and the proposed structure will perform as planned. The engineering recommendations, presented in the preceding section, constitute Rubino's professional estimate of the necessary measures for the proposed structure to perform according to the proposed design based on the information generated and reference during this evaluation, and Rubino's experience in working with these conditions. #### Warranty: The geotechnical engineer warrants that the findings, recommendations, specifications, or professional advice contained herein have been made in accordance with generally accepted professional geotechnical engineering practices in the local area. No other warranties are implied or expressed. #### Federal Excavation Regulations: In Federal Register, Volume 54, No. 209 (October 1989), the United States Department of Labor, Occupational Safety and Health Administration (OSHA) amended its "Construction Standards for Excavations, 29 CFR, part 1926, Subpart P". This document was issued to better ensure the safety of workmen entering trenches or excavations. This federal regulation mandates that all excavations, whether they be utility trenches, basement excavation or footing excavations, be constructed in accordance with the new OSHA guidelines. It is our understanding that these regulations are being strictly enforced and if they are not closely followed, the owner and the contractor could be liable for substantial penalties. The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor's "responsible person," as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and federal safety regulations. Rubino is providing this information solely as a service to our client. Rubino is not assuming responsibility for construction site safety or the contractor's activities; such responsibility is not being implied and should not be inferred. ## Appendix F – Soil Classification General Notes #### **DRILLING & SAMPLING SYMBOLS:** SS: Split Spoon - 1 3/8" I.D., 2" O.D., unless otherwise noted ST: Thin-Walled Tube - 3" O.D., Unless otherwise noted WS: Wash Sample PM: Pressuremeter HAID Hand Auger RB: Rock Bit HS: Hollow Stem Auger DB: Diamond Bit - 4", N, B BS: Bulk Sample Standard "N" Penetration: Blows per foot of a 140-pound hammer falling 30 inches on a 2-inch O.D. split spoon sampler (SS), except where noted. #### **WATER LEVEL MEASUREMENT SYMBOLS:** Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of ground water levels is not possible with only short-term observations. #### **DESCRIPTIVE SOIL CLASSIFICATION:** Soil Classification is based on the Unified Soil Classification System as defined in ASTM D-2487 and D-2488. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; they are described as: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are described as: clays, if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse grained soils are defined on the basis of their relative in-place density and fine-grained soils on the basis of their consistency. Example: Lean clay with sand, trace gravel, stiff (CL); silty sand, trace gravel, medium dense (SM). #### **CONSISTENCY OF FINE-GRAINED SOILS:** ## RELATIVE DENSITY OF COARSE-GRAINED SOILS | Unconfined Compressive
Strength, Qu (tsf) | | N-B | N-Blows/ft. | | Consistency | N-Blows/ft. | | | Relative Density | | | |--|---|------|-------------|---|-------------|--------------|----|---|------------------|-----------------|--| | | < | 0.25 | < 2 | | | Very Soft | 0 | - | 3 | Very Loose | | | 0.25 | - | 0.5 | 2 | - | 4 | Soft | 4 | - | 9 | Loose | | | 0.5 | - | 1 | 4 | - | 8 | Medium Stiff | 10 | - | 29 | Medium Dense | | | 1 | - | 2 | 8 | - | 15 | Stiff | 30 | - | 49 | Dense | | | 2 | - | 4 | 15 | - | 30 | Very Stiff | 50 | - | 80 | Very Dense | | | 4 | - | 8 | 30 | - | 50 | Hard | | | 80+ | Extremely Dense | | | > | _ | 8 | > 50 | | | Very Hard | | | | | | #### **RELATIVE PROPORTIONS OF SAND & GRAVEL** #### **GRAIN SIZE TERMINOLOGY** | Descriptive Term | % of | % of Dry Weight | | Major Component | Size Range | | |-------------------------|-------|-----------------|--------|-----------------|---------------------|--| | | | | | Boulders | Over 12 in. (300mm) | | | Trace | | < | 15 | Cobbles | 12 in. To 3 in. | | | With | 15 | - | 29 | | (300mm to 75mm) | | | Modifier | | > | 30 | Gravel | 3 in. To #4 sieve | | | | | | | | (75mm to 4.75mm) | | | RELATIVE PROPORTIONS OF | FINES | | | Sand | #4 to #200 sieve | | | Descriptive Term | % of | Dry W | /eight | | (4.75mm to 0.75mm) | | | Trace | | < | 5 | | | | | With | 5 | - | 12 | | | | | Modifier | | > | 12 | | | | ## Appendix G – Soil Classification Chart ## **SOIL CLASSIFICATION CHART** NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS | | | ONE | | BOLS | TYPICAL | |---|--|----------------------------------|------------------------------------|--------|---| | IVI | AJOR DIVISI | ONS | GRAPH | LETTER | DESCRIPTIONS | | | GRAVEL
AND | CLEAN
GRAVELS | | GW | WELL-GRADED GRAVELS, GRAVEL -
SAND MIXTURES, LITTLE OR NO
FINES | | | GRAVELLY
SOILS | (LITTLE OR NO FINES) | | GP | POORLY-GRADED GRAVELS,
GRAVEL - SAND MIXTURES, LITTLE
OR NO FINES | | COARSE
GRAINED
SOILS | MORE THAN 50%
OF COARSE
FRACTION | GRAVELS WITH
FINES | | GM | SILTY GRAVELS, GRAVEL - SAND -
SILT MIXTURES | | | RETAINED ON NO.
4 SIEVE | (APPRECIABLE
AMOUNT OF FINES) | | GC | CLAYEY GRAVELS, GRAVEL - SAND -
CLAY MIXTURES | | MORE THAN 50%
OF MATERIAL IS | SAND
AND | CLEAN SANDS | | sw | WELL-GRADED SANDS, GRAVELLY
SANDS, LITTLE OR NO FINES | | LARGER THAN
NO. 200 SIEVE
SIZE | SANDY
SOILS | (LITTLE OR NO FINES) | | SP | POORLY-GRADED SANDS,
GRAVELLY SAND, LITTLE OR NO
FINES | | | MORE THAN 50%
OF COARSE | SANDS WITH
FINES | | SM | SILTY SANDS, SAND - SILT
MIXTURES | | | FRACTION
PASSING ON NO.
4 SIEVE | (APPRECIABLE
AMOUNT OF FINES) | | sc | CLAYEY SANDS, SAND - CLAY
MIXTURES | | | | | | ML | INORGANIC SILTS AND VERY FINE
SANDS, ROCK FLOUR, SILTY OR
CLAYEY FINE SANDS OR CLAYEY
SILTS WITH SLIGHT PLASTICITY | | FINE
GRAINED
SOILS | SILTS
AND
CLAYS | LIQUID LIMIT
LESS THAN 50 | | CL | INORGANIC CLAYS OF LOW TO
MEDIUM PLASTICITY, GRAVELLY
CLAYS, SANDY CLAYS, SILTY
CLAYS, LEAN CLAYS | | GOILG | | | | OL | ORGANIC SILTS AND ORGANIC
SILTY CLAYS OF LOW
PLASTICITY | | MORE THAN 50%
OF MATERIAL IS
SMALLER THAN
NO. 2007 SIEVE | | | | МН | INORGANIC SILTS, MICACEOUS OR
DIATOMACEOUS FINE SAND OR
SILTY SOILS | | SIZE | SILTS
AND
CLAYS | LIQUID LIMIT
GREATER THAN 50 | | СН | INORGANIC CLAYS OF HIGH
PLASTICITY | | | | | | ОН | ORGANIC CLAYS OF MEDIUM TO
HIGH PLASTICITY, ORGANIC SILTS | | HI | GHLY ORGANIC S | SOILS | 70 70 70 70 70
7 75 75 75 70 70 | РТ | PEAT, HUMUS, SWAMP SOILS WITH
HIGH ORGANIC CONTENTS | **425 Shepard Drive** Elgin, Illinois 60123 Project Name: Project Location: Proposed Townhomes & STEM Academy SWC W. Diehl Rd. and N. Mill St. Naperville, Illinois Client: Vrutthi, LLC & Brio Estates, LLC Rubino Project #: G22.148 Site Vicinity Map **425 Shepard Drive** Elgin, Illinois 60123 Project Name: Proposed Townhomes & STEM Academy Project Location: SWC W. Diehl Rd. and N. Mill St. Naperville, Illinois Client: Vrutthi, LLC & Brio Estates, LLC Rubino Project #: G22.148 **Boring** Location Plan Telephone: 847-931-1555 Fax: 847-931-1560 ## **LOG OF BORING B-03** Sheet 1 of 1 WATER LEVELS*** **Drilling Method:** 3 1/4 Hollow Stem Auger Rubino Job No.: G22 148 Sampling Method: Split Spoon Project: Proposed Townhomes & STEM Academy While Drilling N/A Hammer Type: Automatic Location: SWC Diehl Road and Mill Street ▼ Upon Completion N/A Boring Location: Townhomes #3 and #4 City, State: Naperville, Illinois Delay N/A Client: Vrutthi LLC & Brio Estates LLC Station: N/A STANDARD PENETRATION Blows per 6-inch Offset: N/A TEST DATA JSCS Classification Recovery (inches) Elevation (feet) Sample Type Depth, (feet) Graphic Log Sample No. % ы Moisture Moisture, MATERIAL DESCRIPTION Additional • LL Remarks SPT STRENGTH, tsf Qu (Rimac) **Qp/Qr Surface Elev.: 730 ft Approximately 10 inches of TOPSOIL: dark brown silty clay with organic matter 1 10 6-6-8 CL Stiff, brown silty CLAY, trace sand and gravel 21 N=14 Stiff to very stiff, light brown silty CLAY, with Qp=4.5 tsf 12 medium grain sand and gravel 2 6-6-8 16 Sand and gravel proportion decreases to trace at N=14 16 3 1/2 feet below existing grade Qp=4.5 tsf 725 CL 3 16 4-5-7 N=12 18 Qp=4.0 tsf 4-7-13 13 4 N=20 Very stiff, light brown SILT with fine grain sand, ML 20 X Qp=3.0 tsf trace gravel 720-10 15 $\overline{\mathsf{X}}$ Dense to very dense, brown fine grain gravelly SAND 33-22-32 5 14 Potential cobbles / boulders N=54 3 X Rig chatter starts at approximately 11 feet below existing grade 6 13 20-21-23 Sand grain sizes increase to medium at N=44 approximately 13 1/2 feet below existing grade 3 X 715 15 SP 7 13-14-23 12 N=37 X 4 710 20 50-50/3-8 0 >>@ Cobbles appear in auger cuttings at approximately 23 1/2 feet below existing grade 705 25 End of boring at approximately 25 feet below existing grade. Latitude: 41.7997 Completion Depth: 25.0 ft Sample Types: Pressuremeter Longitude: -88.1554 Date Boring Started: 8/10/22 Auger Cutting Shelby Tube Drill Rig: Geoprobe 7822DT Date Boring Completed: 8/10/22 Remarks: Offset 5 ft. East due to tree branch Split-Spoon Grab Sample Logged By: P.P. Log Entry: P. Patel Rock Core No Recovery **Drilling Contractor:** Rubino Engineering, Inc. Checked By: The stratification lines represent approximate boundaries. The transition may be gradual. ^{***}Please reference the geotechnical report text for specific groundwater / dewatering recommendations. Telephone: 847-931-1555 Fax: 847-931-1560 ## **LOG OF BORING B-07** Sheet 1 of 1 WATER LEVELS*** Drilling Method: 3 1/4 Hollow Stem Auger Rubino Job No.: G22 148 Sampling Method: Split Spoon Project: Proposed Townhomes & STEM Academy While Drilling N/A Hammer Type: Automatic Location: SWC Diehl Road and Mill Street ▼ Upon Completion N/A Boring Location: Townhome #7 City, State: Naperville, Illinois Delay N/A Client: Vrutthi LLC & Brio Estates LLC Station: N/A STANDARD PENETRATION Blows per 6-inch Offset: N/A TEST DATA JSCS Classification Recovery (inches) Elevation (feet) Sample Type Depth, (feet) Graphic Log Sample No. % ы Moisture Moisture, MATERIAL DESCRIPTION Additional + LL Remarks SPT STRENGTH, tsf Qu (Rimac) **Qp/Qr Surface Elev.: 731 ft Approximately 14 inches of TOPSOIL: dark brown silty clay with organic matter 730 10 3-4-4 N=8 20 \times Qp=4.5 tsf Very stiff, brown and gray silty CLAY, trace sand and gravel 2 7-8-12 12 >>> CL N=20 17 Qp=4.5 tsf 5 725 3 7-7-10 18 >>> Stiff to very stiff, brown silty CLAY, trace sand N=17 and gravel 17 Qp=4.5 tsf 18 CL 4-5-7 4 N=12 22 Qp=4.0 tsf 10 Rig chatter starts at approximately 10 1/2 feet 5 below existing grade 15-11-10 720 12 Medium dense to dense, brown gravelly SAND N=21 3 \times 9-9-7 6 14 Gravel size increases to coarse gravel and N=16 cobbles at approximately 13 1/2 feet below 8 \times existing grade 15 715 SP 7 6 15-11-10 X 4 N=21 20 710 19-17-14 8 12 N = 31 \times 25 End of boring at approximately 25 feet below existing grade. Latitude: 41.7994 Completion Depth: 25.0 ft Sample Types: Pressuremeter Longitude: -88.1568 8/8/22 Date Boring Started: Auger Cutting Shelby Tube Drill Rig: Geoprobe 7822DT 8/9/22 Date Boring Completed: Remarks: Split-Spoon Grab Sample Logged By: J.W. Log Entry: P. Patel Rock Core No Recovery **Drilling Contractor:** Rubino Engineering, Inc. Checked By: ^{***}Please reference the geotechnical report text for specific groundwater / dewatering recommendations. Telephone: 847-931-1555 Fax: 847-931-1560 ## **LOG OF BORING B-12** Sheet 1 of 1 WATER LEVELS*** Drilling Method: 3 1/4 Hollow Stem Auger Rubino Job No.: G22 148 Sampling Method: Split Spoon Project: Proposed Townhomes & STEM Academy While Drilling N/A Hammer Type: Automatic Location: SWC Diehl Road and Mill Street ▼ Upon Completion N/A Boring Location: Townhome #12 City, State: Naperville, Illinois Delay N/A Client: Vrutthi LLC & Brio Estates LLC Station: N/A STANDARD PENETRATION Blows per 6-inch Offset: N/A TEST DATA JSCS Classification Recovery (inches) Elevation (feet) Sample Type Depth, (feet) Graphic Log Sample No. % Moisture Moisture, MATERIAL DESCRIPTION Additional • LL Remarks SPT STRENGTH, tsf Qu (Rimac) **Qp/Qr Surface Elev.: 730 ft Approximately 2 inches of TOPSOIL: dark brown silty clay with organic matter 10 4-8-14 0 Very stiff, brown HIGH PLASTICITY SILTY Qp=4.5 tsf N=22 21 CLAY, trace sand and gravel CH 1 = 54PL = 28 2 5-6-9 12 Stiff, brown silty CLAY, trace sand and gravel N=15 15 Qp=4.5 tsf 725 CL 3 12 5-6-8 N = 14Stiff, light brown SILT, trace sand and gravel 17 Qp=3.0 tsf ML 16 X 7-16-10 10 4 Medium dense to dense, brown gravelly SAND N=26 5 X 720-10 Rig chatter starts at approximately 10 feet below existing grade 10-18-9 5 12 N=27 4 X 6 12 25-19-10 N=29 4 \times 715 15 SP 7 19-22-23 18 Potential cobbles / boulders at approximately 18 N=45 1/2 feet below existing grade 5 X 710-20 10-9-8 8 12 Medium dense, brown fine grain sand, trace N = 17SP \times 705 25 End of boring at approximately 25 feet below existing grade. Latitude: 41.7987 Completion Depth: 25.0 ft Sample Types: Pressuremeter Longitude: -88.1564 8/8/22 Date Boring Started: Auger Cutting Shelby Tube Drill Rig: Geoprobe 7822DT 8/8/22 Date Boring Completed: Remarks: Split-Spoon Grab Sample Logged By: J.W. Log Entry: P. Patel Rock Core No Recovery **Drilling Contractor:** Rubino Engineering, Inc. Checked By: ^{***}Please reference the geotechnical report text for specific groundwater / dewatering recommendations. Telephone: 847-931-1555 Fax: 847-931-1560 ## **LOG OF BORING B-16** Sheet 1 of 1 WATER LEVELS*** Drilling Method: 3 1/4 Hollow Stem Auger Rubino Job No.: G22 148 Sampling Method: Split Spoon Project: Proposed Townhomes & STEM Academy While Drilling N/A Hammer Type: Automatic Location: SWC Diehl Road and Mill Street ▼ Upon Completion N/A Boring Location: Townhome #16 City, State: Naperville, Illinois Delay N/A Client: Vrutthi LLC & Brio Estates LLC Station: N/A STANDARD PENETRATION Blows per 6-inch Offset: N/A TEST DATA JSCS Classification Recovery (inches) Elevation (feet) Sample Type Depth, (feet) Graphic Log Sample No. % ы Moisture Moisture, MATERIAL DESCRIPTION Additional • LL Remarks SPT STRENGTH, tsf Qu (Rimac) **Qp/Qr Surface Elev.: 732 ft Approximately 12 inches of TOPSOIL: dark brown silty clay with organic matter 6 5-5-6 Stiff, brown silty CLAY, trace sand and gravel N=11 20 X 730 CL 6-6-6 2 10 Stiff, light brown SILT with fine grain sand, trace N=12 9 gravel ML 3 12 3-3-5 >>> Stiff, brown silty CLAY with interspersed N=8 medium grain sand lenses of 1 inch, trace gravel 20 Qp=4.5 tsf 725 CI 10 18-16-21 4 Dense to very dense, light brown gravelly SAND N = 37Potential cobbles / boulders 4 X 10 Rig chatter starts at approximately 10 feet below 5 0 existing grade 50/2-->>@ 720 6 13 19-22-25 N=47 4 \times 15 SP 715 7 22-21-19 14 Increase in gravel proportion at approximately 18 N=40 1/2 feet below existing grade 3 X 20 710 23-33-25 8 >>@ 12 Cobbles appear in auger cuttings at N=58 approximately 23 1/2 feet below existing grade \times 25 End of boring at approximately 25 feet below existing grade. Latitude: 41.7988 Completion Depth: 25.0 ft Sample Types: Pressuremeter Longitude: -88.1551 Date Boring Started: 8/10/22 Auger Cutting Shelby Tube Drill Rig: Geoprobe 7822DT Date Boring Completed: 8/10/22 Remarks: Offset 3 ft. West due to tree branch Split-Spoon Grab Sample Logged By: P.P. Log Entry: P. Patel Rock Core No Recovery **Drilling Contractor:** Rubino Engineering, Inc. Checked By: ^{***}Please reference the geotechnical report text for specific groundwater / dewatering recommendations. Telephone: 847-931-1555 Fax: 847-931-1560 ## **LOG OF BORING B-19** Sheet 1 of 1 WATER LEVELS*** **Drilling Method:** 3 1/4 Hollow Stem Auger Rubino Job No.: G22 148 Sampling Method: Split Spoon Project: Proposed Townhomes & STEM Academy While Drilling N/A Hammer Type: Automatic Location: SWC Diehl Road and Mill Street ▼ Upon Completion N/A Boring Location: STEM Academy City, State: Naperville, Illinois Delay Northwest corner N/A Client: Vrutthi LLC & Brio Estates LLC Station: N/A
STANDARD PENETRATION Offset: N/A Blows per 6-inch TEST DATA JSCS Classification Recovery (inches) Elevation (feet) Sample Type Depth, (feet) Graphic Log Sample No. ы Moisture Moisture, MATERIAL DESCRIPTION Additional • LL Remarks SPT STRENGTH, tsf Qu (Rimac) **Qp/Qr Surface Elev.: 731 ft Approximately 12 inches of TOPSOIL: dark brown silty clay with organic matter 730 1 16 7-5-6 Stiff, dark brown to black silty CLAY, trace sand, N=11 19 \times gravel, and organics Qp=4.0 tsf 4% Organic content CL 4-5-5 * 2 12 N=10 Stiff, brown and gray HIGH PLASTICITY SILTY Qp=3.5 tsf CLAY, trace sand and gravel LL = 57 СН 27 PL = 29 2% Organic content 725 3 6 4-6-5 Stiff, light brown silty CLAY, trace sand and N=11 gravel Qp=3.0 tsf 17 X CL 12 5-5-6 * 4 18 N=11 Qp=3.3 tsf 10 Dense to very dense, brown gravelly SAND Potential cobbles / boulders 5 720 0 50/2--No recovery at 11 feet, observation from auger Rig chatter starts at approximately 10 feet below existing grade 48-20-18 6 12 N=38 X 3 SP 15 715 7 6 40-50/1->>@ 3 X End of boring at 19 feet, 2 inches below existing grade due to auger refusal. 20 710 25 Latitude: 41.8007 Completion Depth: 25.0 ft Sample Types: Pressuremeter Longitude: -88.1566 8/9/22 Date Boring Started: Auger Cutting Shelby Tube Drill Rig: Geoprobe 7822DT 8/9/22 Date Boring Completed: Remarks: Offset 10 ft. North due to tree branch Split-Spoon Grab Sample Logged By: J.W. Log Entry: P. Patel Rock Core No Recovery **Drilling Contractor:** Rubino Engineering, Inc. Checked By: ^{***}Please reference the geotechnical report text for specific groundwater / dewatering recommendations. # SOIL PERMEABILITY RATES | Soil
Separate | Particle size
Diameter
(mm) | Permeability | Permeability Rate/
Percolation Rate
(inches/hour) | Permea bility
(gal/day/ft ^o
soil area) | | |--------------------------|-----------------------------------|-------------------|---|---|--| | Clay | Below 0,002 | Very slow | Less than 0.05 | 0.025 | | | Silt | 0.05-0.002 | Slow | low 0.05-0.2 | | | | Very fine sand | 0.10-0.05 | Moderately slow | | | | | Fine sand | 0.25-0.10 | Moderate | 0.8-2.5 | 100 | | | Medium
sand | 0.5-0.25 | Mode rately rapid | 2.5-5.0 | 250 | | | Coarse sand | 1.0-0.5 | Rapid | 5.0-10.0 | 2500 | | | Very coarse 2.0–1.0 sand | | Very rapid | 10.0 and over | >2500 | | ## **EXHIBIT D** EXISTING CONDITION ONSITE AND OFFSITE CATCHMENT EXHIBIT ## **EXHIBIT E** EXISTING CONDITION PONDPACK FLOOD ROUTING MODEL FOR EACH CATCHMENT BASED ON CN & TC (REVISED) ## **EXISTING CONDITION PONDPACK SCHEMATIC** | Scenario Summary | | | | | | | | | |-------------------------------------|------------------------------|----------------------|--------------|--|--|--|--|--| | ID | 42 | | | | | | | | | Label | 2 YR - 24 HR | | | | | | | | | Notes | | | | | | | | | | Active Topology | Base Active Top | Base Active Topology | | | | | | | | Hydrology | Base Hydrology | | | | | | | | | Rainfall Runoff | 2 YR - 24 HR | 2 YR - 24 HR | | | | | | | | Physical | Base Physical | | | | | | | | | Initial Condition | Base Initial Condition | | | | | | | | | Boundary Condition | Base Boundary Condition | | | | | | | | | Infiltration and Inflow | Base Infiltration and Inflow | | | | | | | | | Output | Base Output | | | | | | | | | User Data Extensions | Base User Data Extensions | | | | | | | | | PondPack Engine Calculation Options | 24 HR | | | | | | | | | Output Summary | | | | | | | | | | Output Increment | 0.010 hours | Duration | 48.000 hours | | | | | | | Rainfall Summary | | | | | | | | | | Return Event Tag | 2 | Rainfall Type | Time-Depth | | | | | | | | | ,, | Curve | | | | | | | Total Depth | 3.3 in | Storm Event | 2YR-24HR | | | | | | | ICPM Output Summary | | | | | | | | | | Target Convergence | 0.00 ft ³ /s | ICPM Time Step | 0.010 hours | | | | | | | Maximum Iterations | 35 | | | | | | | | #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------|-----------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | DEP 001
(IN) | 2 YR - 24
HR | 2 | None | 0.199 | 16.990 | 0.33 | (N/A) | (N/A) | | DEP 001
(OUT) | 2 YR - 24
HR | 2 | None | 0.103 | 17.030 | 0.33 | 733.11 | 0.098 | | DEP 002
(IN) | 2 YR - 24
HR | 2 | None | 0.205 | 17.010 | 0.49 | (N/A) | (N/A) | | DEP 002
(OUT) | 2 YR - 24
HR | 2 | None | 0.136 | 17.160 | 0.46 | 731.54 | 0.074 | | DEP 003
(IN) | 2 YR - 24
HR | 2 | None | 0.592 | 17.040 | 1.18 | (N/A) | (N/A) | | DEP 003
(OUT) | 2 YR - 24
HR | 2 | None | 0.531 | 17.160 | 1.11 | 729.33 | 0.094 | | DEP FES
(IN) | 2 YR - 24
HR | 2 | None | 1.031 | 17.060 | 1.89 | (N/A) | (N/A) | | DEP FES
(OUT) | 2 YR - 24
HR | 2 | None | 0.995 | 17.290 | 1.78 | 727.87 | 0.060 | #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |-----------------------|-----------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | Diehl St | 2 YR - 24
HR | 2 | None | 0.042 | 16.990 | 0.07 | (N/A) | (N/A) | | Mill St | 2 YR - 24
HR | 2 | None | 0.208 | 16.010 | 0.26 | (N/A) | (N/A) | | O-14 | 2 YR - 24
HR | 2 | None | 0.995 | 17.290 | 1.78 | (N/A) | (N/A) | | ONSITE
001 | 2 YR - 24
HR | 2 | None | 0.168 | 16.990 | 0.28 | (N/A) | (N/A) | | ONSITE
002 | 2 YR - 24
HR | 2 | None | 0.094 | 16.990 | 0.16 | (N/A) | (N/A) | | ONSITE
003 | 2 YR - 24
HR | 2 | None | 0.456 | 16.990 | 0.76 | (N/A) | (N/A) | | Onsite | 2 YR - 24
HR | 2 | None | 0.481 | 17.000 | 0.80 | (N/A) | (N/A) | | Onsite to
Diehl St | 2 YR - 24
HR | 2 | None | 0.028 | 16.990 | 0.05 | (N/A) | (N/A) | | Onsite to
Mill St | 2 YR - 24
HR | 2 | None | 0.040 | 16.990 | 0.06 | (N/A) | (N/A) | | Onsite to
West St | 2 YR - 24
HR | 2 | None | 0.004 | 16.990 | 0.01 | (N/A) | (N/A) | | ROW 001 | 2 YR - 24
HR | 2 | None | 0.031 | 16.990 | 0.05 | (N/A) | (N/A) | | ROW 002 | 2 YR - 24
HR | 2 | None | 0.008 | 16.990 | 0.01 | (N/A) | (N/A) | | ROW TO
SITE | 2 YR - 24
HR | 2 | None | 0.018 | 16.990 | 0.03 | (N/A) | (N/A) | | ROW to
Diehl St | 2 YR - 24
HR | 2 | None | 0.014 | 16.990 | 0.02 | (N/A) | (N/A) | | ROW to Mill
St | 2 YR - 24
HR | 2 | None | 0.168 | 15.000 | 0.19 | (N/A) | (N/A) | | ROW to
West St | 2 YR - 24
HR | 2 | None | 0.041 | 16.990 | 0.07 | (N/A) | (N/A) | | West St | 2 YR - 24
HR | 2 | None | 0.045 | 16.990 | 0.07 | (N/A) | (N/A) | #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|-----------|------------------------| | Outlet-1 | Pond Outlet | Upstream | 0.199 | 16.990 | 0.33 | DEP 001 | Pond Inflow | | Outlet-1 | Pond Outlet | Outflow | 0.103 | 17.030 | 0.33 | DEP 001 | Pond
Outflow | | Outlet-1 | Pond Outlet | Link | 0.103 | 17.030 | 0.33 | | | | Outlet-1 | Pond Outlet | Downstream | 0.205 | 17.010 | 0.49 | DEP 002 | | | Outlet-2 | Pond Outlet | Upstream | 0.205 | 17.010 | 0.49 | DEP 002 | Pond Inflow | #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|-----------|------------------------| | Outlet-2 | Pond Outlet | Outflow | 0.136 | 17.160 | 0.46 | DEP 002 | Pond
Outflow | | Outlet-2 | Pond Outlet | Link | 0.136 | 17.160 | 0.46 | | | | Outlet-2 | Pond Outlet | Downstream | 0.592 | 17.040 | 1.18 | DEP 003 | | | Outlet-4 | Pond Outlet | Upstream | 0.592 | 17.040 | 1.18 | DEP 003 | Pond Inflow | | Outlet-4 | Pond Outlet | Outflow | 0.531 | 17.160 | 1.11 | DEP 003 | Pond
Outflow | | Outlet-4 | Pond Outlet | Link | 0.531 | 17.160 | 1.11 | | | | Outlet-4 | Pond Outlet | Downstream | 1.031 | 17.060 | 1.89 | DEP FES | | | Outlet-5 | Pond Outlet | Upstream | 1.031 | 17.060 | 1.89 | DEP FES | Pond Inflow | | Outlet-5 | Pond Outlet | Outflow | 0.995 | 17.290 | 1.78 | DEP FES | Pond
Outflow | | Outlet-5 | Pond Outlet | Link | 0.995 | 17.290 | 1.78 | | | | Outlet-5 | Pond Outlet | Downstream | 0.995 | 17.290 | 1.78 | O-14 | | #### Messages | Message Id | 6 | |--------------|---| | Scenario | (N/A) | | Element Type | (N/A) | | Element Id | -2 | | Label | (N/A) | | Time | (N/A) | | Message | There are user notifications available. Double-click this message to load these messages. | | Source | Project File | | Scenario Summary | | | | | | | |---------------------------------------|-------------------------------|----------------------|---------------------|--|--|--| | ID | 1 | | | | | | | Label | 100 YR - 24 HR | 100 YR - 24 HR | | | | | | Notes | | | | | | | | Active Topology | Base Active Topol | Base Active Topology | | | | | | Hydrology | Base Hydrology | | | | | | | Rainfall Runoff | 100 YR - 24 HR | | | | | | | Physical | Base Physical | | | | | | | Initial Condition | Base
Initial Condi | tion | | | | | | Boundary Condition | Base Boundary Co | ondition | | | | | | Infiltration and Inflow | Base Infiltration a | nd Inflow | | | | | | Output | Base Output | | | | | | | User Data Extensions | Base User Data Extensions | | | | | | | PondPack Engine Calculation Options | 24 HR | | | | | | | Output Summary | | | | | | | | Output Increment | 0.010 hours | Duration | 48.000 hours | | | | | Rainfall Summary | | | | | | | | Return Event Tag | 100 | Rainfall Type | Time-Depth
Curve | | | | | Total Depth | 8.6 in Storm Event 100YR-24HR | | | | | | | ICPM Output Summary | | | | | | | | Target Convergence Maximum Iterations | 0.00 ft ³ /s
35 | ICPM Time Step | 0.010 hours | | | | #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------|-------------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | DEP 001
(IN) | 100 YR - 24
HR | 100 | None | 0.895 | 16.010 | 1.24 | (N/A) | (N/A) | | DEP 001
(OUT) | 100 YR - 24
HR | 100 | None | 0.799 | 16.040 | 1.24 | 733.15 | 0.105 | | DEP 002
(IN) | 100 YR - 24
HR | 100 | None | 1.260 | 16.010 | 1.88 | (N/A) | (N/A) | | DEP 002
(OUT) | 100 YR - 24
HR | 100 | None | 1.191 | 16.040 | 1.88 | 731.62 | 0.083 | | DEP 003
(IN) | 100 YR - 24
HR | 100 | None | 3.264 | 16.010 | 4.77 | (N/A) | (N/A) | | DEP 003
(OUT) | 100 YR - 24
HR | 100 | None | 3.203 | 16.040 | 4.76 | 729.44 | 0.123 | | DEP FES
(IN) | 100 YR - 24
HR | 100 | None | 5.468 | 16.020 | 7.91 | (N/A) | (N/A) | | DEP FES
(OUT) | 100 YR - 24
HR | 100 | None | 5.432 | 17.110 | 7.24 | 729.12 | 0.494 | #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |-----------------------|-------------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | Diehl St | 100 YR - 24
HR | 100 | None | 0.187 | 16.010 | 0.26 | (N/A) | (N/A) | | Mill St | 100 YR - 24
HR | 100 | None | 0.624 | 15.990 | 0.73 | (N/A) | (N/A) | | O-14 | 100 YR - 24
HR | 100 | None | 5.432 | 17.110 | 7.24 | (N/A) | (N/A) | | ONSITE
001 | 100 YR - 24
HR | 100 | None | 0.762 | 16.010 | 1.06 | (N/A) | (N/A) | | ONSITE
002 | 100 YR - 24
HR | 100 | None | 0.426 | 16.010 | 0.59 | (N/A) | (N/A) | | ONSITE
003 | 100 YR - 24
HR | 100 | None | 2.073 | 16.010 | 2.89 | (N/A) | (N/A) | | Onsite | 100 YR - 24
HR | 100 | None | 2.187 | 16.000 | 3.05 | (N/A) | (N/A) | | Onsite to
Diehl St | 100 YR - 24
HR | 100 | None | 0.128 | 16.010 | 0.18 | (N/A) | (N/A) | | Onsite to
Mill St | 100 YR - 24
HR | 100 | None | 0.173 | 16.010 | 0.24 | (N/A) | (N/A) | | Onsite to
West St | 100 YR - 24
HR | 100 | None | 0.019 | 16.010 | 0.03 | (N/A) | (N/A) | | ROW 001 | 100 YR - 24
HR | 100 | None | 0.133 | 16.010 | 0.18 | (N/A) | (N/A) | | ROW 002 | 100 YR - 24
HR | 100 | None | 0.035 | 16.010 | 0.05 | (N/A) | (N/A) | | ROW TO
SITE | 100 YR - 24
HR | 100 | None | 0.079 | 16.010 | 0.11 | (N/A) | (N/A) | | ROW to
Diehl St | 100 YR - 24
HR | 100 | None | 0.059 | 16.010 | 0.08 | (N/A) | (N/A) | | ROW to Mill
St | 100 YR - 24
HR | 100 | None | 0.451 | 14.990 | 0.50 | (N/A) | (N/A) | | ROW to
West St | 100 YR - 24
HR | 100 | None | 0.178 | 16.010 | 0.24 | (N/A) | (N/A) | | West St | 100 YR - 24
HR | 100 | None | 0.197 | 16.010 | 0.27 | (N/A) | (N/A) | #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|-----------|------------------------| | Outlet-1 | Pond Outlet | Upstream | 0.895 | 16.010 | 1.24 | DEP 001 | Pond Inflow | | Outlet-1 | Pond Outlet | Outflow | 0.799 | 16.040 | 1.24 | DEP 001 | Pond
Outflow | | Outlet-1 | Pond Outlet | Link | 0.799 | 16.040 | 1.24 | | | | Outlet-1 | Pond Outlet | Downstream | 1.260 | 16.010 | 1.88 | DEP 002 | | | Outlet-2 | Pond Outlet | Upstream | 1.260 | 16.010 | 1.88 | DEP 002 | Pond Inflow | #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|-----------|------------------------| | Outlet-2 | Pond Outlet | Outflow | 1.191 | 16.040 | 1.88 | DEP 002 | Pond
Outflow | | Outlet-2 | Pond Outlet | Link | 1.191 | 16.040 | 1.88 | | | | Outlet-2 | Pond Outlet | Downstream | 3.264 | 16.010 | 4.77 | DEP 003 | | | Outlet-4 | Pond Outlet | Upstream | 3.264 | 16.010 | 4.77 | DEP 003 | Pond Inflow | | Outlet-4 | Pond Outlet | Outflow | 3.203 | 16.040 | 4.76 | DEP 003 | Pond
Outflow | | Outlet-4 | Pond Outlet | Link | 3.203 | 16.040 | 4.76 | | | | Outlet-4 | Pond Outlet | Downstream | 5.468 | 16.020 | 7.91 | DEP FES | | | Outlet-5 | Pond Outlet | Upstream | 5.468 | 16.020 | 7.91 | DEP FES | Pond Inflow | | Outlet-5 | Pond Outlet | Outflow | 5.432 | 17.110 | 7.24 | DEP FES | Pond
Outflow | | Outlet-5 | Pond Outlet | Link | 5.432 | 17.110 | 7.24 | | | | Outlet-5 | Pond Outlet | Downstream | 5.432 | 17.110 | 7.24 | O-14 | | #### Messages | Message Id | 6 | |--------------|---| | Scenario | (N/A) | | Element Type | (N/A) | | Element Id | -2 | | Label | (N/A) | | Time | (N/A) | | Message | There are user notifications available. Double-click this message to load these messages. | | Source | Project File | ## **APPENDIX F** PROPOSED CONDITION ONSITE AND OFFSITE CATCHMENT EXHIBIT AND STORMWATER MANAGEMENT SUMMARY AND DETAIL SHEETS 1, 2, & 3 ## EXHIBIT F1 & 2 - PROPOSED CATCHMENT EXHIBIT DETAILS # THE PROSPERITA & ORION STEM SCHOOL TYPICAL SECTION SUB-SURFACE STORAGE MODULES w/INFILTRATION HOLES ILLUSTRATION OF SUB-SURFACE INFILTRATION VAULT BY STORMCAPTURE SYSTEMS CROSS—SECTION OF FOREBAY SEDIMENT TRAP <u>ILLUSTRATION OF SUB-SURFACE VAULT</u> "DOUBLETRAP" BY STORMTRAP SYSTEMS VRUTTHI LLC 3644 WHITE EAGLE DRIVE NAPERVILLE, ILLINOIS 60564 (630) 803-5768 PREPARED BY: CEMCON, Ltd. Consulting Engineers, Land Surveyors & Planners 2280 White Oak Circle, Suite 100 Aurora, Illinois 60502-9675 PH: 630.862.2100 FAX: 630.862.2199 E-Mail: info@cemcon.com Website: www.cemcon.com DISC NO.: 904426 FILE NAME: PREOVER DRAWN BY: KMS FLD. BK. / PG. NO.: --- COMPLETION DATE: 09-08-22 JOB NO.: 904.426 XREF: TOPO PROJECT MANAGER: RWB REV.: 4-12-2023, 06-01-23 CITY OF NAPERVILLE PROJECT NO. . 22-10000097 Copyright © 2023 Cemcon, Ltd. All rights reserved. #### APPENDIX G PROPOSED CONDITION COLLECTIVE EXHIBIT OF FLOW CHARTS, PONDPACK SUMMARIES AND EXECUTIVE SUMMARY, OVERLAND FLOOD ROUTE EXHIBIT AND FLOWMASTER COMPUTATIONS (SPECIFIC FLOOD ROUTING MODELS AVAILABLE UPON REQUEST) EXHIBIT G - Proposed Pondpack Model Output Summary | | | | 2 Year 24 Hr (cfs) | | | | 100 Year 24 hour (cfs) | | | | |-------|------------------------------------|----------------------------------|----------------------|----------------|--------------|----------------------|------------------------|--------------------|--------------|----------| | | | | West St / West St to | | | West St / West St to | | | | | | | | | Mill St | Diehl Rd | Conestoga Rd | Diehl Rd | Mill St | Diehl Rd | Conestoga Rd | Diehl Rd | | Exist | | | 0.26 | 0.07 | 1.89 | 0.07 | 0.73 | 0.26 | 7.91 | 0.27 | | Run 1 | Outlets
Infiltration | 1
N/A | 0.51 | 0.09 | 0.00 | 0.07 | 1.27 | 0.32 | 0.00 | 0.25 | | | Modules | 350 | | | | | | | 1 | | | | Diehl/West ROW
Other | No
N/A | HWL
Total Release | 722.74
0.49 | | | HWL
Total Release | 727.49
1.14 | | | | Run 2 | Outlets | 2 | 0.26 | 0.09 | 0.00 | 0.07 | 0.69 | 0.32 | 1.72 | 0.25 | | | Infiltration
Modules | N/A
350 | | | | | | | | | | | Diehl/West ROW
Other | No
N/A | HWL
Total Release | 722.92
0.23 | | | HWL
Total Release | 727.48
2.21 | | | | | | | | | | | | | | | | Run 3 | Outlets
Infiltration
Modules | 1
4.25 CFS
350 | 0.10 | 0.09 | 0.00 | 0.07 | 0.71 | 0.32 | 0.00 | 0.25 | | | Diehl/West ROW
Other | No
N/A | HWL
Total Release | 721.50
0.00 |] | | HWL
Total Release | 722.85
0.51 | | | | | | | | | | | | | | | | Run 4 | Outlets
Infiltration
Modules | 2
4.25 CFS
350 | 0.10 | 0.09 | 0.00 | 0.07 | 0.46 | 0.32 | 0.00 | 0.25 | | | Diehl/West ROW
Other | No
N/A | HWL
Total Release | 721.50
0.00 |] | | HWL
Total Release | 722.93
0.23 | | | | | | | | | | | | | | | | Run 5 | Outlets
Infiltration
Modules | 2
2.27 CFS
185 | 0.10 | 0.09 | 0.00 | 0.07 | 0.67 | 0.32 | 0.55 | 0.25 | | | Diehl/West ROW
Other | No
OCS #2 Weir Plate at 727.1 | HWL
Total Release | 721.50
0.00 | | | HWL
Total Release | 727.10
1.01 | | | | Dun C | Outlots | 2 | 0.10 | 0.00 | 0.00 | 0.07 | 0.70 | 0.33 | 2.50 | 0.35 | | Run 6 | Outlets
Infiltration
Modules | 2
2.27 CFS
185 | 0.10 | 0.09 | 0.00 | 0.07 | 0.70 | 0.32 | 2.59 | 0.25 | | | Diehl/West ROW
Other | Yes OCS #2 Weir Plate at 727.1 | HWL
Total Release | 721.50
0.00 |] | | HWL
Total Release | 727.60
3.08 CFS | | |
RUN 1 PONDPACK SCHEMATIC | Scenario Summary | | | | | |-------------------------------------|-------------------|------------|---|---------------| | ID | 61 | | | | | Label | 2 YR - 24 HR | | | | | Notes | | | | | | Active Topology | Base Active Topo | ology | | | | Hydrology | Base Hydrology | | | | | Rainfall Runoff | 2 YR - 24 HR | | | | | Physical | Base Physical | | | | | Initial Condition | Base Initial Cond | lition | | | | Boundary Condition | Base Boundary C | Condition | | | | Infiltration and Inflow | Base Infiltration | and Inflow | | | | Output | Base Output | | | | | User Data Extensions | Base User Data E | Extensions | | | | PondPack Engine Calculation Options | 24 HR | | | | | Output Summary | | | | | | Output Increment | 0.010 hours | Duration | 1 | 120.000 hours | | Output Increment Rainfall Summary | 0.010 hours | Duration | | 1 | 2 3.3 in #### **Executive Summary (Nodes)** Rainfall Type Storm Event | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-----------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | Diehl Road | 2 YR - 24
HR | 2 | None | 0.062 | 16.010 | 0.10 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 2 YR - 24
HR | 2 | None | 1.486 | 20.020 | 0.51 | (N/A) | (N/A) | | Mill St ROW
to Site | 2 YR - 24
HR | 2 | None | 0.137 | 15.990 | 0.17 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 2 YR - 24
HR | 2 | None | 0.071 | 16.010 | 0.10 | (N/A) | (N/A) | | Mill and
Diehl ROW | 2 YR - 24
HR | 2 | None | 0.015 | 16.010 | 0.02 | (N/A) | (N/A) | | ONSITE | 2 YR - 24
HR | 2 | None | 2.040 | 16.010 | 2.91 | (N/A) | (N/A) | | SWMF 001
(IN) | 2 YR - 24
HR | 2 | None | 2.176 | 16.010 | 3.07 | (N/A) | (N/A) | | SWMF 001
(OUT) | 2 YR - 24
HR | 2 | None | 1.414 | 24.050 | 0.49 | 722.74 | 1.851 | | West St
ROW | 2 YR - 24
HR | 2 | None | 0.047 | 16.010 | 0.07 | (N/A) | (N/A) | Time-Depth 2YR-24HR Curve Return Event Tag #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 2.176 | 16.010 | 3.07 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 1.414 | 24.050 | 0.49 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 1.414 | 24.050 | 0.49 | | | | Outlet-3 | Pond Outlet | Downstream | 1.486 | 20.020 | 0.51 | MILL ST
STORM
SEWER | | | Message Id | 67 | |--------------|--| | Scenario | 2 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | | Scenario Summary | | |-------------------------------------|------------------------------| | ID | 1 | | Label | 100 YR - 24 HR | | Notes | | | Active Topology | Base Active Topology | | Hydrology | Base Hydrology | | Rainfall Runoff | 100 YR - 24 HR | | Physical | Base Physical | | Initial Condition | Base Initial Condition | | Boundary Condition | Base Boundary Condition | | Infiltration and Inflow | Base Infiltration and Inflow | | Output | Base Output | | User Data Extensions | Base User Data Extensions | | PondPack Engine Calculation Options | 24 HR | | 0.1.10 | | | Output Summary | | | Output Summary | | | | |------------------|-------------|---------------|---------------------| | Output Increment | 0.010 hours | Duration | 120.000 hours | | Rainfall Summary | | | | | Return Event Tag | 100 | Rainfall Type | Time-Depth
Curve | | Total Depth | 8.6 in | Storm Event | 100YR-24HR | #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-------------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | Diehl Road | 100 YR - 24
HR | 100 | None | 0.249 | 16.000 | 0.33 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 100 YR - 24
HR | 100 | None | 6.541 | 18.010 | 1.27 | (N/A) | (N/A) | | Mill St ROW
to Site | 100 YR - 24
HR | 100 | None | 0.384 | 15.010 | 0.44 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 100 YR - 24
HR | 100 | None | 0.228 | 15.990 | 0.28 | (N/A) | (N/A) | | Mill and
Diehl ROW | 100 YR - 24
HR | 100 | None | 0.062 | 16.010 | 0.08 | (N/A) | (N/A) | | ONSITE | 100 YR - 24
HR | 100 | None | 6.942 | 15.990 | 8.68 | (N/A) | (N/A) | | SWMF 001
(IN) | 100 YR - 24
HR | 100 | None | 7.326 | 15.990 | 9.12 | (N/A) | (N/A) | | SWMF 001
(OUT) | 100 YR - 24
HR | 100 | None | 6.314 | 24.080 | 1.14 | 727.49 | 6.277 | | West St
ROW | 100 YR - 24
HR | 100 | None | 0.187 | 16.000 | 0.25 | (N/A) | (N/A) | #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 7.326 | 15.990 | 9.12 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 6.314 | 24.080 | 1.14 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 6.314 | 24.080 | 1.14 | | | | Outlet-3 | Pond Outlet | Downstream | 6.541 | 18.010 | 1.27 | MILL ST
STORM
SEWER | | | Message Id | 67 | |--------------|--| | Scenario | 100 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | #### RUN 2 PONDPACK SCHEMATIC | Scenario Summary | | | | |-------------------------------------|-------------------|------------|---------------| | ID | 1 | | | | Label | 100 YR - 24 HR | | | | Notes | | | | | Active Topology | Base Active Topo | ology | | | Hydrology | Base Hydrology | | | | Rainfall Runoff | 100 YR - 24 HR | | | | Physical | Base Physical | | | | Initial Condition | Base Initial Cond | ition | | | Boundary Condition | Base Boundary C | Condition | | | Infiltration and Inflow | Base Infiltration | and Inflow | | | Output | Base Output | | | | User Data Extensions | Base User Data E | Extensions | | | PondPack Engine Calculation Options | 24 HR | | | | | | | | | Output Summary | | | | | Output Increment | 0.010 hours | Duration | 120.000 hours | | Output Increment | 0.010 hours Duration | | 120.000 hours | | |------------------|----------------------|---------------|---------------------|--| | Rainfall Summary | | | | | | Return Event Tag | 100 | Rainfall Type | Time-Depth
Curve | | | Total Depth | 8.6 in | Storm Event | 100YR-24HR | | #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-------------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | 15" to
Conestoga | 100 YR - 24
HR | 100 | None | 0.960 | 21.080 | 1.72 | (N/A) | (N/A) | | Diehl Road | 100 YR - 24
HR | 100 | None | 0.249 | 16.000 | 0.33 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 100 YR - 24
HR | 100 | None | 3.702 | 17.010 | 0.69 | (N/A) | (N/A) | | Mill St ROW
to Site | 100 YR - 24
HR | 100 | None | 0.384 | 15.010 | 0.44 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 100 YR - 24
HR | 100 | None | 0.228 | 15.990 | 0.28 | (N/A) | (N/A) | | Mill and
Diehl ROW | 100 YR - 24
HR | 100 | None | 0.062 | 16.010 | 0.08 | (N/A) | (N/A) | | ONSITE | 100 YR - 24
HR | 100 | None | 6.942 | 15.990 | 8.68 | (N/A) | (N/A) | | SWMF 001
(IN) | 100 YR - 24
HR | 100 | None | 7.326 | 15.990 | 9.12 | (N/A) | (N/A) | | SWMF 001
(OUT) | 100 YR - 24
HR | 100 | None | 4.434 | 21.080 | 2.21 | 727.48 | 6.268 | | West
St
ROW | 100 YR - 24
HR | 100 | None | 0.187 | 16.000 | 0.25 | (N/A) | (N/A) | Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 2 #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 7.326 | 15.990 | 9.12 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 4.434 | 21.080 | 2.21 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 3.474 | 21.080 | 0.48 | | | | Outlet-3 | Pond Outlet | Downstream | 3.702 | 17.010 | 0.69 | MILL ST
STORM
SEWER | | | Outlet-6 | Pond Outlet | Upstream | 7.326 | 15.990 | 9.12 | SWMF 001 | Pond Inflow | | Outlet-6 | Pond Outlet | Outflow | 4.434 | 21.080 | 2.21 | SWMF 001 | Pond
Outflow | | Outlet-6 | Pond Outlet | Link | 0.960 | 21.080 | 1.72 | | | | Outlet-6 | Pond Outlet | Downstream | 0.960 | 21.080 | 1.72 | 15" to
Conestoga | | | Message Id | 67 | |--------------|--| | Scenario | 100 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | | Scenario Summary | | | |-------------------------------------|------------------------------|---------------| | ID | 61 | | | Label | 2 YR - 24 HR | | | Notes | | | | Active Topology | Base Active Topology | | | Hydrology | Base Hydrology | | | Rainfall Runoff | 2 YR - 24 HR | | | Physical | Base Physical | | | Initial Condition | Base Initial Condition | | | Boundary Condition | Base Boundary Condition | | | Infiltration and Inflow | Base Infiltration and Inflow | | | Output | Base Output | | | User Data Extensions | Base User Data Extensions | | | PondPack Engine Calculation Options | 24 HR | | | Output Summary | | | | Output Increment | 0.010 hours Duration | 120.000 hours | | Rainfall Summary | | | 2 3.3 in #### **Executive Summary (Nodes)** Rainfall Type Storm Event | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-----------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | 15" to
Conestoga | 2 YR - 24
HR | 2 | None | 0.000 | 0.000 | 0.00 | (N/A) | (N/A) | | Diehl Road | 2 YR - 24
HR | 2 | None | 0.062 | 16.010 | 0.10 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 2 YR - 24
HR | 2 | None | 1.352 | 18.010 | 0.26 | (N/A) | (N/A) | | Mill St ROW
to Site | 2 YR - 24
HR | 2 | None | 0.137 | 15.990 | 0.17 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 2 YR - 24
HR | 2 | None | 0.071 | 16.010 | 0.10 | (N/A) | (N/A) | | Mill and
Diehl ROW | 2 YR - 24
HR | 2 | None | 0.015 | 16.010 | 0.02 | (N/A) | (N/A) | | ONSITE | 2 YR - 24
HR | 2 | None | 2.040 | 16.010 | 2.91 | (N/A) | (N/A) | | SWMF 001
(IN) | 2 YR - 24
HR | 2 | None | 2.176 | 16.010 | 3.07 | (N/A) | (N/A) | | SWMF 001
(OUT) | 2 YR - 24
HR | 2 | None | 1.280 | 24.130 | 0.23 | 722.92 | 2.026 | | West St
ROW | 2 YR - 24
HR | 2 | None | 0.047 | 16.010 | 0.07 | (N/A) | (N/A) | Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Time-Depth 2YR-24HR Curve Return Event Tag #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 2.176 | 16.010 | 3.07 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 1.280 | 24.130 | 0.23 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 1.280 | 24.130 | 0.23 | | | | Outlet-3 | Pond Outlet | Downstream | 1.352 | 18.010 | 0.26 | MILL ST
STORM
SEWER | | | Outlet-6 | Pond Outlet | Upstream | 2.176 | 16.010 | 3.07 | SWMF 001 | Pond Inflow | | Outlet-6 | Pond Outlet | Outflow | 1.280 | 24.130 | 0.23 | SWMF 001 | Pond
Outflow | | Outlet-6 | Pond Outlet | Link | 0.000 | 0.000 | 0.00 | | | | Outlet-6 | Pond Outlet | Downstream | 0.000 | 0.000 | 0.00 | 15" to
Conestoga | | | Message Id | 67 | |--------------|--| | Scenario | 2 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | #### RUN 3 PONDPACK SCHEMATIC | Scenario Summary | | | | | |-------------------------------------|-------------------|------------|---|---------------| | ID | 61 | | | | | Label | 2 YR - 24 HR | | | | | Notes | | | | | | Active Topology | Base Active Topo | ology | | | | Hydrology | Base Hydrology | | | | | Rainfall Runoff | 2 YR - 24 HR | | | | | Physical | Base Physical | | | | | Initial Condition | Base Initial Cond | lition | | | | Boundary Condition | Base Boundary C | Condition | | | | Infiltration and Inflow | Base Infiltration | and Inflow | | | | Output | Base Output | | | | | User Data Extensions | Base User Data E | Extensions | | | | PondPack Engine Calculation Options | 24 HR | | | | | Output Summary | | | | | | Output Increment | 0.010 hours | Duration | 1 | 120.000 hours | | Output Increment Rainfall Summary | 0.010 hours | Duration | | 1 | 2 3.3 in #### **Executive Summary (Nodes)** Rainfall Type Storm Event | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-----------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | Diehl Road | 2 YR - 24
HR | 2 | None | 0.062 | 16.010 | 0.10 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 2 YR - 24
HR | 2 | None | 0.071 | 16.010 | 0.10 | (N/A) | (N/A) | | Mill St ROW
to Site | 2 YR - 24
HR | 2 | None | 0.137 | 15.990 | 0.17 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 2 YR - 24
HR | 2 | None | 0.071 | 16.010 | 0.10 | (N/A) | (N/A) | | Mill and
Diehl ROW | 2 YR - 24
HR | 2 | None | 0.015 | 16.010 | 0.02 | (N/A) | (N/A) | | ONSITE | 2 YR - 24
HR | 2 | None | 2.040 | 16.010 | 2.91 | (N/A) | (N/A) | | SWMF 001
(IN) | 2 YR - 24
HR | 2 | None | 2.176 | 16.010 | 3.07 | (N/A) | (N/A) | | SWMF 001
(OUT) | 2 YR - 24
HR | 2 | None | 0.000 | 26.170 | 0.00 | 721.50 | 0.701 | | West St
ROW | 2 YR - 24
HR | 2 | None | 0.047 | 16.010 | 0.07 | (N/A) | (N/A) | Time-Depth 2YR-24HR Curve Return Event Tag #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 2.176 | 16.010 | 3.07 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 0.000 | 26.170 | 0.00 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 0.000 | 26.170 | 0.00 | | | | Outlet-3 | Pond Outlet | Downstream | 0.071 | 16.010 | 0.10 | MILL ST
STORM
SEWER | | | Message Id | 67 | |--------------|--| | Scenario | 2 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | | Scenario Summary | | _ | |-------------------------------------
------------------------------|---------------| | ID | 1 | | | Label | 100 YR - 24 HR | | | Notes | | | | Active Topology | Base Active Topology | | | Hydrology | Base Hydrology | | | Rainfall Runoff | 100 YR - 24 HR | | | Physical | Base Physical | | | Initial Condition | Base Initial Condition | | | Boundary Condition | Base Boundary Condition | | | Infiltration and Inflow | Base Infiltration and Inflow | | | Output | Base Output | | | User Data Extensions | Base User Data Extensions | | | PondPack Engine Calculation Options | 24 HR | | | Output Summary | | | | Output Ingranant | 0.010 house Duration | 120,000 hours | | Output Summary | | | | |------------------|-------------|---------------|---------------------| | Output Increment | 0.010 hours | Duration | 120.000 hours | | Rainfall Summary | | | | | Return Event Tag | 100 | Rainfall Type | Time-Depth
Curve | | Total Depth | 8.6 in | Storm Event | 100YR-24HR | #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-------------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | Diehl Road | 100 YR - 24
HR | 100 | None | 0.249 | 16.000 | 0.33 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 100 YR - 24
HR | 100 | None | 0.533 | 18.010 | 0.71 | (N/A) | (N/A) | | Mill St ROW
to Site | 100 YR - 24
HR | 100 | None | 0.384 | 15.010 | 0.44 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 100 YR - 24
HR | 100 | None | 0.228 | 15.990 | 0.28 | (N/A) | (N/A) | | Mill and
Diehl ROW | 100 YR - 24
HR | 100 | None | 0.062 | 16.010 | 0.08 | (N/A) | (N/A) | | ONSITE | 100 YR - 24
HR | 100 | None | 6.942 | 15.990 | 8.68 | (N/A) | (N/A) | | SWMF 001
(IN) | 100 YR - 24
HR | 100 | None | 7.326 | 15.990 | 9.12 | (N/A) | (N/A) | | SWMF 001
(OUT) | 100 YR - 24
HR | 100 | None | 0.306 | 19.070 | 0.51 | 722.85 | 1.955 | | West St
ROW | 100 YR - 24
HR | 100 | None | 0.187 | 16.000 | 0.25 | (N/A) | (N/A) | #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 7.326 | 15.990 | 9.12 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 0.306 | 19.070 | 0.51 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 0.306 | 19.070 | 0.51 | | | | Outlet-3 | Pond Outlet | Downstream | 0.533 | 18.010 | 0.71 | MILL ST
STORM
SEWER | | | Message Id | 67 | |--------------|--| | Scenario | 100 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | #### RUN 4 PONDPACK SCHEMATIC | Scenario Summary | | | | |-------------------------------------|-------------------|---------------|---------------| | ID | 61 | | | | Label | 2 YR - 24 HR | | | | Notes | | | | | Active Topology | Base Active Top | ology | | | Hydrology | Base Hydrology | | | | Rainfall Runoff | 2 YR - 24 HR | | | | Physical | Base Physical | | | | Initial Condition | Base Initial Con- | dition | | | Boundary Condition | Base Boundary | Condition | | | Infiltration and Inflow | Base Infiltration | and Inflow | | | Output | Base Output | | | | User Data Extensions | Base User Data | Extensions | | | PondPack Engine Calculation Options | 24 HR | | | | Output Summary | | | | | Output Increment | 0.010 hours | Duration | 120.000 hours | | Rainfall Summary | | | | | Return Event Tag | 2 | Painfall Tyne | Time-Depth | #### **Executive Summary (Nodes)** 3.3 in Rainfall Type Storm Event | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-----------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | 15" to
Conestoga | 2 YR - 24
HR | 2 | None | 0.000 | 0.000 | 0.00 | (N/A) | (N/A) | | Diehl Road | 2 YR - 24
HR | 2 | None | 0.062 | 16.010 | 0.10 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 2 YR - 24
HR | 2 | None | 0.071 | 16.010 | 0.10 | (N/A) | (N/A) | | Mill St ROW
to Site | 2 YR - 24
HR | 2 | None | 0.137 | 15.990 | 0.17 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 2 YR - 24
HR | 2 | None | 0.071 | 16.010 | 0.10 | (N/A) | (N/A) | | Mill and
Diehl ROW | 2 YR - 24
HR | 2 | None | 0.015 | 16.010 | 0.02 | (N/A) | (N/A) | | ONSITE | 2 YR - 24
HR | 2 | None | 2.040 | 16.010 | 2.91 | (N/A) | (N/A) | | SWMF 001
(IN) | 2 YR - 24
HR | 2 | None | 2.176 | 16.010 | 3.07 | (N/A) | (N/A) | | SWMF 001
(OUT) | 2 YR - 24
HR | 2 | None | 0.000 | 26.170 | 0.00 | 721.50 | 0.701 | | West St
ROW | 2 YR - 24
HR | 2 | None | 0.047 | 16.010 | 0.07 | (N/A) | (N/A) | Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2YR-24HR Curve #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 2.176 | 16.010 | 3.07 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 0.000 | 26.170 | 0.00 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 0.000 | 0.000 | 0.00 | | | | Outlet-3 | Pond Outlet | Downstream | 0.071 | 16.010 | 0.10 | MILL ST
STORM
SEWER | | | Outlet-6 | Pond Outlet | Upstream | 2.176 | 16.010 | 3.07 | SWMF 001 | Pond Inflow | | Outlet-6 | Pond Outlet | Outflow | 0.000 | 26.170 | 0.00 | SWMF 001 | Pond
Outflow | | Outlet-6 | Pond Outlet | Link | 0.000 | 0.000 | 0.00 | | | | Outlet-6 | Pond Outlet | Downstream | 0.000 | 0.000 | 0.00 | 15" to
Conestoga | | | Message Id | 67 | |--------------|--| | Scenario | 2 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | | Scenario Summary | | | | |-------------------------------------|----------------------|-----------|---------------| | ID | 1 | | | | Label | 100 YR - 24 HR | | | | Notes | | | | | Active Topology | Base Active Topolo | ogy | | | Hydrology | Base Hydrology | | | | Rainfall Runoff | 100 YR - 24 HR | | | | Physical | Base Physical | | | | Initial Condition | Base Initial Conditi | ion | | | Boundary Condition | Base Boundary Cor | ndition | | | Infiltration and Inflow | Base Infiltration ar | nd Inflow | | | Output | Base Output | | | | User Data Extensions | Base User Data Ex | tensions | | | PondPack Engine Calculation Options | 24 HR | | | | | | | | | Output Summary | | | | | Output Increment | 0.010 hours | Duration | 120.000 hours | #### **Executive Summary (Nodes)** Rainfall Type Storm Event 100 8.6 in | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-------------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | 15" to
Conestoga | 100 YR - 24
HR | 100 | None | 0.000 | 0.000 | 0.00 | (N/A) | (N/A) | | Diehl Road | 100 YR - 24
HR | 100 | None | 0.249 | 16.000 | 0.33 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 100 YR - 24
HR | 100 | None | 0.375 | 17.010 | 0.46 | (N/A) | (N/A) | | Mill St ROW
to Site | 100 YR - 24
HR | 100 | None | 0.384 | 15.010 | 0.44 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 100 YR - 24
HR | 100 | None | 0.228 | 15.990 | 0.28 | (N/A) | (N/A) | | Mill and
Diehl ROW | 100 YR - 24
HR | 100 | None | 0.062 | 16.010 | 0.08 | (N/A) | (N/A) | | ONSITE | 100 YR - 24
HR | 100 | None | 6.942 | 15.990 |
8.68 | (N/A) | (N/A) | | SWMF 001
(IN) | 100 YR - 24
HR | 100 | None | 7.326 | 15.990 | 9.12 | (N/A) | (N/A) | | SWMF 001
(OUT) | 100 YR - 24
HR | 100 | None | 0.148 | 19.100 | 0.23 | 722.93 | 2.035 | | West St
ROW | 100 YR - 24
HR | 100 | None | 0.187 | 16.000 | 0.25 | (N/A) | (N/A) | Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Time-Depth 100YR-24HR Curve Rainfall Summary Return Event Tag #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 7.326 | 15.990 | 9.12 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 0.148 | 19.100 | 0.23 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 0.148 | 19.100 | 0.23 | | | | Outlet-3 | Pond Outlet | Downstream | 0.375 | 17.010 | 0.46 | MILL ST
STORM
SEWER | | | Outlet-6 | Pond Outlet | Upstream | 7.326 | 15.990 | 9.12 | SWMF 001 | Pond Inflow | | Outlet-6 | Pond Outlet | Outflow | 0.148 | 19.100 | 0.23 | SWMF 001 | Pond
Outflow | | Outlet-6 | Pond Outlet | Link | 0.000 | 0.000 | 0.00 | | | | Outlet-6 | Pond Outlet | Downstream | 0.000 | 0.000 | 0.00 | 15" to
Conestoga | | | Message Id | 67 | |--------------|--| | Scenario | 100 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | #### RUN 5 PONDPACK SCHEMATIC | Scenario Summary | | | | | | | | |-------------------------------------|-------------------|---------------|---------------|--|--|--|--| | ID | 61 | | | | | | | | Label | 2 YR - 24 HR | 2 YR - 24 HR | | | | | | | Notes | | | | | | | | | Active Topology | Base Active Top | ology | | | | | | | Hydrology | Base Hydrology | | | | | | | | Rainfall Runoff | 2 YR - 24 HR | | | | | | | | Physical | Base Physical | | | | | | | | Initial Condition | Base Initial Con | dition | | | | | | | Boundary Condition | Base Boundary | Condition | | | | | | | Infiltration and Inflow | Base Infiltration | and Inflow | | | | | | | Output | Base Output | | | | | | | | User Data Extensions | Base User Data | Extensions | | | | | | | PondPack Engine Calculation Options | 24 HR | | | | | | | | Output Summary | | | | | | | | | Output Increment | 0.010 hours | Duration | 120.000 hours | | | | | | Rainfall Summary | | | | | | | | | Return Event Tag | 2 | Rainfall Type | Time-Depth | | | | | #### **Executive Summary (Nodes)** 3.3 in Rainfall Type Storm Event | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-----------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | 15" to
Conestoga | 2 YR - 24
HR | 2 | None | 0.000 | 0.000 | 0.00 | (N/A) | (N/A) | | Diehl Road | 2 YR - 24
HR | 2 | None | 0.062 | 16.010 | 0.10 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 2 YR - 24
HR | 2 | None | 0.071 | 16.010 | 0.10 | (N/A) | (N/A) | | Mill St ROW
to Site | 2 YR - 24
HR | 2 | None | 0.137 | 15.990 | 0.17 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 2 YR - 24
HR | 2 | None | 0.071 | 16.010 | 0.10 | (N/A) | (N/A) | | Mill and
Diehl ROW | 2 YR - 24
HR | 2 | None | 0.015 | 16.010 | 0.02 | (N/A) | (N/A) | | ONSITE | 2 YR - 24
HR | 2 | None | 2.040 | 16.010 | 2.91 | (N/A) | (N/A) | | SWMF 001
(IN) | 2 YR - 24
HR | 2 | None | 2.176 | 16.010 | 3.07 | (N/A) | (N/A) | | SWMF 001
(OUT) | 2 YR - 24
HR | 2 | None | 0.000 | 27.910 | 0.00 | 721.50 | 0.701 | | West St
ROW | 2 YR - 24
HR | 2 | None | 0.047 | 16.010 | 0.07 | (N/A) | (N/A) | Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Curve 2YR-24HR #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 2.176 | 16.010 | 3.07 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 0.000 | 27.910 | 0.00 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 0.000 | 0.000 | 0.00 | | | | Outlet-3 | Pond Outlet | Downstream | 0.071 | 16.010 | 0.10 | MILL ST
STORM
SEWER | | | Outlet-6 | Pond Outlet | Upstream | 2.176 | 16.010 | 3.07 | SWMF 001 | Pond Inflow | | Outlet-6 | Pond Outlet | Outflow | 0.000 | 27.910 | 0.00 | SWMF 001 | Pond
Outflow | | Outlet-6 | Pond Outlet | Link | 0.000 | 0.000 | 0.00 | | | | Outlet-6 | Pond Outlet | Downstream | 0.000 | 0.000 | 0.00 | 15" to
Conestoga | | | Message Id | 67 | |--------------|--| | Scenario | 2 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | | Scenario Summary | | | |-------------------------------------|------------------------------|---------------| | ID | 1 | | | Label | 100 YR - 24 HR | | | Notes | | | | Active Topology | Base Active Topology | | | Hydrology | Base Hydrology | | | Rainfall Runoff | 100 YR - 24 HR | | | Physical | Base Physical | | | Initial Condition | Base Initial Condition | | | Boundary Condition | Base Boundary Condition | | | Infiltration and Inflow | Base Infiltration and Inflow | | | Output | Base Output | | | User Data Extensions | Base User Data Extensions | | | PondPack Engine Calculation Options | 24 HR | | | Output Summary | | | | Output Increment | 0.010 hours Duration | 120.000 hours | | Output Increment | 0.010 hours | Duration | 120.000 hours | | |------------------|-------------|---------------|---------------------|--| | Rainfall Summary | | | | | | Return Event Tag | 100 | Rainfall Type | Time-Depth
Curve | | | Total Depth | 8.6 in | Storm Event | 100YR-24HR | | | | | | | | #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-------------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | 15" to
Conestoga | 100 YR - 24
HR | 100 | None | 0.018 | 20.090 | 0.38 | (N/A) | (N/A) | | Diehl Road | 100 YR - 24
HR | 100 | None | 0.249 | 16.000 | 0.33 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 100 YR - 24
HR | 100 | None | 0.867 | 17.010 | 0.67 | (N/A) | (N/A) | | Mill St ROW
to Site | 100 YR - 24
HR | 100 | None | 0.384 | 15.010 | 0.44 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 100 YR - 24
HR | 100 | None | 0.228 | 15.990 | 0.28 | (N/A) | (N/A) | | Mill and
Diehl ROW | 100 YR - 24
HR | 100 | None | 0.062 | 16.010 | 0.08 | (N/A) | (N/A) | | ONSITE | 100 YR - 24
HR | 100 | None | 6.942 | 15.990 | 8.68 | (N/A) | (N/A) | | SWMF 001
(IN) | 100 YR - 24
HR | 100 | None | 7.326 | 15.990 | 9.12 | (N/A) | (N/A) | | SWMF 001
(OUT) | 100 YR - 24
HR | 100 | None | 0.657 | 20.090 | 0.85 | 727.14 | 3.541 | | West St
ROW | 100 YR - 24
HR | 100 | None | 0.187 | 16.000 | 0.25 | (N/A) | (N/A) | Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 2 #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 7.326 | 15.990 | 9.12 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 0.657 | 20.090 | 0.85 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 0.639 | 20.090 | 0.47 | | | | Outlet-3 | Pond Outlet | Downstream | 0.867 | 17.010 | 0.67 |
MILL ST
STORM
SEWER | | | Outlet-6 | Pond Outlet | Upstream | 7.326 | 15.990 | 9.12 | SWMF 001 | Pond Inflow | | Outlet-6 | Pond Outlet | Outflow | 0.657 | 20.090 | 0.85 | SWMF 001 | Pond
Outflow | | Outlet-6 | Pond Outlet | Link | 0.018 | 20.090 | 0.38 | | | | Outlet-6 | Pond Outlet | Downstream | 0.018 | 20.090 | 0.38 | 15" to
Conestoga | | | Message Id | 67 | |--------------|--| | Scenario | 2 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | #### RUN 6 PONDPACK SCHEMATIC | Scenario Summary | | | |-------------------------------------|------------------------------|---------------| | ID | 61 | | | Label | 2 YR - 24 HR | | | Notes | | | | Active Topology | Base Active Topology | | | Hydrology | Base Hydrology | | | Rainfall Runoff | 2 YR - 24 HR | | | Physical | Base Physical | | | Initial Condition | Base Initial Condition | | | Boundary Condition | Base Boundary Condition | | | Infiltration and Inflow | Base Infiltration and Inflow | | | Output | Base Output | | | User Data Extensions | Base User Data Extensions | | | PondPack Engine Calculation Options | 24 HR | | | Output Summary | | | | Output Increment | 0.010 hours Duration | 120.000 hours | | Rainfall Summary | | | 2 3.3 in #### **Executive Summary (Nodes)** Rainfall Type Storm Event | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-----------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | 15" to
Conestoga | 2 YR - 24
HR | 2 | None | 0.000 | 0.000 | 0.00 | (N/A) | (N/A) | | Diehl Road | 2 YR - 24
HR | 2 | None | 0.062 | 16.010 | 0.10 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 2 YR - 24
HR | 2 | None | 0.071 | 16.010 | 0.10 | (N/A) | (N/A) | | Mill St ROW
to Site | 2 YR - 24
HR | 2 | None | 0.137 | 15.990 | 0.17 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 2 YR - 24
HR | 2 | None | 0.071 | 16.010 | 0.10 | (N/A) | (N/A) | | Mill and
Diehl ROW | 2 YR - 24
HR | 2 | None | 0.015 | 16.010 | 0.02 | (N/A) | (N/A) | | ONSITE | 2 YR - 24
HR | 2 | None | 2.040 | 16.010 | 2.91 | (N/A) | (N/A) | | ROW - 0.5
CFS
Constant | 2 YR - 24
HR | 2 | None | 4.959 | 0.000 | 0.50 | (N/A) | (N/A) | | SWMF 001
(IN) | 2 YR - 24
HR | 2 | None | 7.135 | 16.010 | 3.57 | (N/A) | (N/A) | Time-Depth 2YR-24HR Curve Return Event Tag #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |-------------------|-----------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | SWMF 001
(OUT) | 2 YR - 24
HR | 2 | None | 0.000 | 0.000 | 0.00 | 719.47 | 0.460 | | West St
ROW | 2 YR - 24
HR | 2 | None | 0.047 | 16.010 | 0.07 | (N/A) | (N/A) | #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 7.135 | 16.010 | 3.57 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 0.000 | 0.000 | 0.00 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 0.000 | 0.000 | 0.00 | | | | Outlet-3 | Pond Outlet | Downstream | 0.071 | 16.010 | 0.10 | MILL ST
STORM
SEWER | | | Outlet-6 | Pond Outlet | Upstream | 7.135 | 16.010 | 3.57 | SWMF 001 | Pond Inflow | | Outlet-6 | Pond Outlet | Outflow | 0.000 | 0.000 | 0.00 | SWMF 001 | Pond
Outflow | | Outlet-6 | Pond Outlet | Link | 0.000 | 0.000 | 0.00 | | | | Outlet-6 | Pond Outlet | Downstream | 0.000 | 0.000 | 0.00 | 15" to
Conestoga | | | Message Id | 67 | |--------------|--| | Scenario | 2 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | | Scenario Summary | | | | | |-------------------------------------|------------------------------|--|--|--| | ID | 1 | | | | | Label | 100 YR - 24 HR | | | | | Notes | | | | | | Active Topology | Base Active Topology | | | | | Hydrology | Base Hydrology | | | | | Rainfall Runoff | 100 YR - 24 HR | | | | | Physical | Base Physical | | | | | Initial Condition | Base Initial Condition | | | | | Boundary Condition | Base Boundary Condition | | | | | Infiltration and Inflow | Base Infiltration and Inflow | | | | | Output | Base Output | | | | | User Data Extensions | Base User Data Extensions | | | | | PondPack Engine Calculation Options | 24 HR | | | | | Output Summary | | | | |------------------|-------------|---------------|---------------------| | Output Increment | 0.010 hours | Duration | 120.000 hours | | Rainfall Summary | | | | | Return Event Tag | 100 | Rainfall Type | Time-Depth
Curve | | Total Depth | 8.6 in | Storm Event | 100YR-24HR | #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to
Peak
(hours) | Peak Flow
(ft³/s) | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |------------------------------|-------------------|----------------------------|------------|---------------------------------|----------------------------|----------------------|--|---------------------------------------| | 15" to
Conestoga | 100 YR - 24
HR | 100 | None | 0.517 | 19.060 | 2.59 | (N/A) | (N/A) | | Diehl Road | 100 YR - 24
HR | 100 | None | 0.249 | 16.000 | 0.33 | (N/A) | (N/A) | | MILL ST
STORM
SEWER | 100 YR - 24
HR | 100 | None | 0.997 | 17.010 | 0.70 | (N/A) | (N/A) | | Mill St ROW
to Site | 100 YR - 24
HR | 100 | None | 0.384 | 15.010 | 0.44 | (N/A) | (N/A) | | Mill St to
Storm
Sewer | 100 YR - 24
HR | 100 | None | 0.228 | 15.990 | 0.28 | (N/A) | (N/A) | | Mill and
Diehl ROW | 100 YR - 24
HR | 100 | None | 0.062 | 16.010 | 0.08 | (N/A) | (N/A) | | ONSITE | 100 YR - 24
HR | 100 | None | 6.942 | 15.990 | 8.68 | (N/A) | (N/A) | | ROW - 0.5
CFS
Constant | 100 YR - 24
HR | 100 | None | 4.959 | 0.000 | 0.50 | (N/A) | (N/A) | | SWMF 001
(IN) | 100 YR - 24
HR | 100 | None | 12.284 | 15.990 | 9.62 | (N/A) | (N/A) | #### **Executive Summary (Nodes)** | Label | Scenario | Return
Event
(years) | Truncation | Hydrograph
Volume
(ac-ft) | Time to Peak Flo
Peak (ft³/s)
(hours) | | Maximum
Water
Surface
Elevation
(ft) | Maximum
Pond
Storage
(ac-ft) | |-------------------|-------------------|----------------------------|------------|---------------------------------|---|------|--|---------------------------------------| | SWMF 001
(OUT) | 100 YR - 24
HR | 100 | None | 1.286 | 19.060 | 3.08 | 727.60 | 3.731 | | West St
ROW | 100 YR - 24
HR | 100 | None | 0.187 | 16.000 | 0.25 | (N/A) | (N/A) | #### **Executive Summary (Links)** | Label | Туре | Location | Hydrograph
Volume
(ac-ft) | Peak Time
(hours) | Peak Flow
(ft³/s) | End Point | Node Flow
Direction | |----------|-------------|------------|---------------------------------|----------------------|----------------------|---------------------------|------------------------| | Outlet-3 | Pond Outlet | Upstream | 12.284 | 15.990 | 9.62 | SWMF 001 | Pond Inflow | | Outlet-3 | Pond Outlet | Outflow | 1.286 | 19.060 | 3.08 | SWMF 001 | Pond
Outflow | | Outlet-3 | Pond Outlet | Link | 0.769 | 19.060 | 0.49 | | | | Outlet-3 | Pond Outlet | Downstream | 0.997 | 17.010 | 0.70 | MILL ST
STORM
SEWER | | | Outlet-6 | Pond Outlet | Upstream | 12.284 | 15.990 | 9.62 | SWMF 001 | Pond Inflow | | Outlet-6 | Pond Outlet | Outflow | 1.286 | 19.060 | 3.08 | SWMF 001 | Pond
Outflow | | Outlet-6 | Pond Outlet | Link | 0.517 | 19.060 | 2.59 | | | | Outlet-6 | Pond Outlet | Downstream | 0.517 | 19.060 | 2.59 | 15" to
Conestoga | | | Message Id | 67 | |--------------
--| | Scenario | 2 YR - 24 HR | | Element Type | Composite Outlet Structure | | Element Id | 34 | | Label | SWMF 001 | | Time | (N/A) | | Message | Flow direction set to reverse for one ore more structures in composite outlet structure SWMF 001. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond. | | Source | Warning | #### **EXHIBIT H** ### ILLUSTRATION OF SPECIAL SUB-SURFACE MODULES WITH REQUIRED PCBMP STORAGE AND TYPICAL SECTIONS (SEE EXHIBITS F1, F2, AND F1 & 2) #### **EXHIBIT I** ## WETLAND MAPS AND FLOOD PLAIN MAPS #### **LEGEND:** Project Area ## **Location Map** Source: U.S. Geological Survey Section 1 T38N R9E Latitude: 41.799906 Longitude: -88.155993 ### SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** SCALE: 1"= 2000' Exhibit A ## LEGEND: Project Area Estuarine and Marine Deepwater Estuarine and Marine Wetland Freshwater Emergent Wetland Freshwater Forested/Shrub Wetland Freshwater Pond Lake Other Riverine ## **National Wetlands Inventory** Source: U.S. Fish & Wildlife Service SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** SCALE: 1"=200' **NORTH** Exhibit B ## DuPage County Wetland Inventory Source: DuPage County Stormwater Management ## SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** SCALE: 1"=200' **NORTH** Exhibit C ## Soil Map Source: U.S. Department of Agriculture Natural Resources Conservation Service Web Soil Survey 3.1 ## SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** 100 200 4 SCALE: 1"=200' Exhibit D Source: U.S. Geological Survey Naperville Quadrangle ## SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** Exhibit E ## Flood Insurance Rate Map Source: Federal Emergency Management Agency (FEMA) Panel Number: 17043C0142J Effective Date: August 1, 2019 SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** Exhibit F ## SWC Diehl Rd & N Mill St Project Number: 22-0511A Vrutthi LLC Exhibit G #### **LEGEND:** Project Area #### National Register Properties - · Fart of a NR Historic District - Determined aligible for the NR - Part of a NR Historic Dietrics, contributing **Historic Architectural Resources Geographic Information System** Source: Illinois State Historic Preservation Office SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** SCALE: 1"=400' **NORTH** Exhibit H #### **LEGEND:** Project Area Sample Points A-C WL Delineation Field Work Completed 05.24.2022 ## **Aerial Photograph** Map data: ©2020Google Image Date: 2018 ## SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** 0 100 200 4 SCALE: 1"=200' Exhibit I ## **EXHIBIT J** NEGATIVE WETLAND FINDINGS REPORT CONDUCTED BY ENCAP, INC. 2585 Wagner Ct. DeKalb, IL 60115 Phone: 815.748.4500 Fax: 815.748.4255 www.encapinc.net #### TRANSMITTAL LETTER | TO: | Vrutthi LLC | | DATE: July 14, 202 | 2 | | | | | |----------|-------------------------------|--------------------------|-------------------------------|--|--|--|--|--| | | 3644 White I | Eagle Drive | PROJECT: SWC Diel
Street | PROJECT: SWC Diehl Road and N. Mill Street | | | | | | | Naperville, II | linois 60564 | | | | | | | | ATTN: | Ms. Selvei R
selvei.rajkur | ajkumar
nar@gmail.com | ENCAP Project # 22- | 0511A | | | | | | We are | sending you: | | Date of Enclosed
Materials | # of Copies | | | | | | 2022 Ne | egative Wetland | d Findings Report | July 14, 2022 | PDF | CC: | | | Date of Enclosed
Materials | # of Copies | Via: | UPS Ground | ☐ UPS Overnight | ☐ U.S. Mail ⊠ Electronic | | | | | | | THESE A | RE TRANSMITT | ED AS CHECKED BE | LOW: | | | | | | | ☐ For Ap | oproval | ☐ As Requested | ⊠ For your review | ⊠ For your use | | | | | | REMARK | S: | | | | | | | | | | | | | | | | | | Signed: Susan Rowley, PWS, CWS, LEED AP srowley@encapinc.net # NEGATIVE WETLAND FINDINGS REPORT SWC DIEHL ROAD AND N MILL STREET NAPERVILLE TOWNSHIP, DUPAGE COUNTY, ILLINOIS **Prepared for:** Ms. Selvei Rajkumar Vrutthi LLC 3644 White Eagle Drive Naperville, IL 60564 Prepared by: ENCAP, Inc. Ms. Susan Rowley, PWS, CWS, LEED AP Date Prepared: July 14, 2022 ENCAP, Inc. Project #: 22-0511A 2585 Wagner Ct. DeKalb, IL 60115 Phone: 815.748.4500 Fax: 815.748.4255 www.encapinc.net #### **NEGATIVE WETLAND FINDINGS REPORT** #### SWC Diehl Road and N Mill Street / Vrutthi LLC #### **Table of Contents** | | Page Number | |--|-------------| | Executive Summary | 1 | | Methods and Findings Map Review Field Investigation | 1 | | Conclusions and Recommendations | 4 | | References | 5 | | Attachments: | | | Wetland Determination Data Forms Site Photographs USACE Antecedent Precipitation Tool Figure & Tables (05/24/2022) Exhibits A – Location Map B – National Wetlands Inventory C – DuPage County Wetland Inventory Map D – Soil Map E – 2021 USGS Topographic Map | | F – FEMA Flood Insurance Rate Map G – USGS Hydrologic Atlas Map H – ISHPO HARGIS Map I – Aerial Photograph #### **NEGATIVE WETLAND FINDINGS REPORT** Project Name and Client: SWC Diehl Road and N Mill Street / Vrutthi LLC Project Number: 22-0511A Location: Illinois, DuPage County, Naperville Township, City of Naperville, T38N R9E, Section 1; Latitude: 41.799844; Longitude: -88.156023 Date of Site Visit: May 24, 2022 Field Investigators: S. DeDina, R. Van Herik #### **EXECUTIVE SUMMARY** The project area (approximately 12.5 acres in size) is located on the southwest corner of Diehl Road and N. Mill Street, Naperville, DuPage County, Illinois (Exhibit A: Location Map). It is generally bounded by Diehl Road to the north, commercial development to the south, N. Mill Street to the east, and West Street to the west. The project area consists of undeveloped, unmanaged woodland dominated by invasive woody brush. The topography of the site is flat with no buildings on site. On May 24, 2022 ENCAP, Inc. performed an investigation of the project area in order to identify regulated surface water resources on, or within 100 feet of the site. A floodplain determination was not included as part of our investigation. No wetlands or other waters of the U.S. were identified within or adjacent to the project area. #### **METHODS AND FINDINGS** #### Map Review Prior to the field investigation, a preliminary site evaluation was performed using natural resource mapping. Reviewed maps are attached as Exhibits B - H and summarized below. - The **National Wetland Inventory** does not identify any water resources or wetlands within the project area (Exhibit B). - The **DuPage County Wetland Inventory Map** does not identify any wetlands within the project area (Exhibit C). - The **Soil Map** identifies the following soils within the project area: Varna silt loam, 2 to 4 percent slopes (223B), Markham silt loam, 2 to 4 percent slopes (531B), Graymont silt loam, 2 to 5 percent slopes (541B), and Chenoa silty clay loam, 0 to 2 percent slopes (614A). None of the soils present are considered predominantly hydric in DuPage County (Exhibit D). - The **2021 United States Geological Survey (USGS) Topographic Map** does not identify any surface drainage within or adjacent to the project area (Exhibit E). - The **FEMA Flood Insurance Rate Map** identifies the project area outside the 500-year floodplain (Exhibit F). - The **U.S.G.S. Hydrologic Atlas** does not identify any historic flooding on the project area (Exhibit G). - The Illinois State Historic Preservation Office (ISHPO) Historic Architectural Resources Geographic Information System (HARGIS) Map does not identify any properties or objects that have been listed in the National Register of Historic Places, determined eligible, or surveyed without determination within the project area (Exhibit H). #### Field Investigation ENCAP, Inc. performed a site investigation to determine if any areas within the project area meet the requirements for a wetland based on U.S. Army Corps of Engineers (USACE) parameters of vegetation, hydrology, and soils. In general, positive indication of each of the three parameters must be demonstrated to classify an area as wetland. Each of these parameters is discussed below. - **Vegetation** Three vegetative indicators are applied to plant communities in order to determine if the hydrophytic vegetation criterion is met. - 1. More than 50% of the dominant plant species across all strata must be hydrophytic (water tolerant). The U.S. Army Corps of Engineers has prepared a regional list of plants occurring in wetlands which assigns the plant species different indicators. Wetland plants fall into three indicator classes based on differing tolerances to water level and soil saturation. These indicators are rated obligate wetland (OBL), facultative wetland (FACW), or facultative (FAC). Dominant plant species are recorded at sample points within investigated areas. - 2. The prevalence index is 3.0 or less. The prevalence index is a weighted-average wetland indicator status of all plant species in a sampling plot. Each indicator status category is given a numeric value (OBL = 1, FACW = 2, FAC = 3, FACU = 4, and UPL = 5) and weighting is by abundance. A prevalence index of 3.0 or less indicates that hydrophytic vegetation is present. The prevalence index is used to determine whether hydrophytic vegetation is
present on sites where indicators of hydric soil and wetland hydrology are present but the vegetation initially fails the dominance test. - 3. The plant community passes either the dominance test (Indictor 1) or the prevalence index (Indicator 2) after reconsideration of the indicator status of certain plant species that exhibit morphological adaptations for life in wetlands. Common morphological adaptations include but are not limited to adventitious roots, multistemmed trunks, shallow root systems developed on or near the soil surface, and buttressing in tree species. To apply this indicator, these morphological features must be observed on more than 50% of the individuals of a FACU species living in an area where indicators of hydric soil and wetland hydrology are present. - Hydrology To be considered a wetland, an area must have 14 or more consecutive days of flooding or ponding, or a water table 12 inches or less below the soil surface, during the growing season at a minimum frequency of 5 years in 10. Wetland hydrology indicators are divided into four groups as described below: - Group A indicators are based on the direct observation of surface water or groundwater during a site visit. - Group B consists of evidence that the site is subject to flooding or ponding, although it may not be inundated currently. These indicators include water marks, drift deposits, sediment deposits, and similar features. - Group C consists of other evidence that the soil is saturated currently or was saturated recently. Some of these indicators, such as oxidized rhizopheres surrounding living roots and the presence of reduced iron or sulfur in the soil profile, indicate that the soil has been saturated for an extended period. - o **Group D** consists of landscape and vegetation characteristics that indicate contemporary rather than historical wet conditions. These indicators include stunted or stressed plants, geomorphic position, and the FAC-neutral test. Wetland hydrology indicators are intended as one-time observations of site conditions that are sufficient evidence of wetland hydrology. Within each group, indicators are divided into two categories – *primary* and *secondary*. One primary indicator from any group is sufficient to conclude that wetland hydrology is present. In the absence of a primary indicator, two or more secondary indicators from any group are required to conclude that wetland hydrology is present. • Soils - To be considered a wetland, an area must contain hydric soil. Hydric soils are formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic (lacking oxygen) conditions in the upper part. Soils generally, but not always, will develop indicators that are formed predominantly by the accumulation or loss of iron, manganese, sulfur, or carbon compounds in a saturated and anaerobic environment. The most current edition of the United States Department of Agriculture, Natural Resource Conservation Service Field Indicators of Hydric Soils in the United States is used for identification of hydric soils. Field indicators of hydric soils include but are not limited to the presence of any of the following: histic epipedon, sulfidic odor, at least 2 centimeters of muck, depleted matrix, and/or redoximorphic features. Field indicators are usually examined in the top 24 inches of the soil. Soil colors are determined using Munsell Soil Color Charts. At the time of the field investigation, the majority of the project area consisted of undeveloped, unmanaged woodland dominated by invasive woody brush such as Common Buckthorn (*Rhamnus cathartica*), Black Cherry (*Prunus serotina*), and Eastern Cottonwood (*Populus deltoides*). There were several openings in the woodland which were examined to determine if they satisfied wetland criteria. None of these sites so qualified. Each area is briefly described below and U.S. Army Corps of Engineers data forms are provided to support our negative findings (See Wetland Determination Data Forms). <u>Investigated Area 1.</u> This investigated area is located in the southwestern portion of the project area (Exhibit I: Aerial Photograph – Sample Point A). This area was investigated because it consisted of an opening in the woodland and contained hydrophytic vegetation (Photograph 1). The area around Investigated Area 1 was primarily vegetated by Box Elder Maple (*Acer negundo*), Black Cherry, Eastern Cottonwood, Gray Dogwood (*Cornus racemosa*), Blackberry (*Rubus allegheniensis*), and Riverside Grape (*Vitis riparia*). The mapped soil series is Varna silt loam, 2 to 4 percent slopes (223B), a non-hydric soil. The field investigated soils did not exhibit hydric characteristics. Evidence of persistent hydrology was not observed (See USACE data forms). Based on the non-persistent hydrology and the presence of non-hydric soil, Investigated Area 1 does not qualify as wetland. <u>Investigated Area 2.</u> This investigated area is located in the western portion of the project area (Exhibit I: Aerial Photograph – Sample Point B). This area was investigated because it consisted of an opening in the woodland and contained hydrophytic vegetation (Photograph 2). The area around Investigated Area 2 was primarily vegetated by Black Locust (*Robinia pseudoacacia*), Siberian Elm (*Ulmus pumila*), White Mulberry (*Morus alba*), Common Buckthorn, and Tatarian Honeysuckle (*Lonicera tatarica*). The mapped soil series is Chenoa silty clay loam, 0 to 2 percent slopes (614A), a non-hydric soil. The field investigated soils did not exhibit hydric characteristics. Evidence of persistent hydrology was not observed (See USACE data forms). Based on the dominance of upland plant species, non-persistent hydrology, and the presence of non-hydric soil, Investigated Area 2 does not qualify as wetland. <u>Investigated Area 3.</u> This investigated area is located in the southeastern portion of the project area (Exhibit I: Aerial Photograph – Sample Point C). This area was investigated because it consisted of an opening in the woodland and contained hydrophytic vegetation (Photograph 3). The area around Investigated Area 3 was primarily vegetated by Eastern Cottonwood, Black Cherry, and Common Buckthorn. The mapped soil series is Varna silt loam, 2 to 4 percent slopes (223B), a non-hydric soil. The field investigated soils did not exhibit hydric characteristics. Evidence of persistent hydrology was not observed (See USACE data forms). Based on the non-persistent hydrology and the presence of non-hydric soil, Investigated Area 3 does not qualify as wetland. #### **CONCLUSIONS AND RECOMMENDATIONS** No wetlands or other waters of the U.S. were identified on, or within 100 feet of the project area. Further concurrence with regulatory agencies is not required at this time. ENCAP, Inc. recommends that this report be submitted as part of a development package as necessary for future development of the property. #### REFERENCES - County of DuPage, Countywide Stormwater and Flood Plain Ordinance. Adopted September 24, 1991, Revised May 14, 2019. - Cowardin, L.M., Carter, V., Golet, F.D., and LaRoe, E.T., 1979, "Classification of Wetlands and Deepwater Habitats of the United States," FWA/OBS-79/31, U.S. Fish & Wildlife Service, Office of Biological Services, Washington, D.C. - DuPage County Stormwater and Environmental Concerns. "DuPage County Wetland Map Initiative Download Site." 2015. DuPage County Department of Economic Development and Planning. http://dupage.maps.arcgis.com/apps/webappviewer/index.html - Environmental Laboratory. 1987. "Corps of Engineers Wetlands Delineation Manual," Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. - Herman, B., Sliwinski, R. and S. Whitaker. 2017. Chicago Region FQA (Floristic Quality Assessment) Calculator. U.S. Army Corps of Engineers, Chicago, IL. - Illinois Department of Natural Resources. "Agency Action Plans for Interagency Wetlands Policy Act of 1989." http://dnr.state.il.us/wetlands/ch6d.htm. - Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X. - Munsell Soil Color Charts. 2020. GretagMacbeth, New Windsor, New York. - Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at the following link: https://websoilsurvey.sc.egov.usda.gov/. Accessed [05/11/2022]. - Swink F. and G. Wilhelm, 1994, "Plants of the Chicago Region", 4th Edition, Indianapolis: Indiana Academy of Science. - United States Army Corps of Engineers 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest Region (Version 2.0), U.S. Army Engineer Research and Development Center. - United States Army Corps of Engineers 2016. National Wetland Plant List, version 3.3. http://wetland_plants.usace.army.mil/ U.S. Army Corps of Engineers. Engineer Research and Development Center. Cold Regions Research and Engineering Laboratory, Hanover, NH. - United States Department of Agriculture, Natural Resources Conservation Service. 2018. Field Indicators of Hydric Soils in the United States, Version 8.2. L.M. Vasilas, G.W. Hurt, and J.F. Berkowitz (eds.). USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils. - Wilhelm, G. and L. Rericha. 2017, "Flora of the Chicago Region: A Floristic and Ecological Synthesis", Indianapolis: Indiana Academy of Science. #### WETLAND DETERMINATION DATA FORM - Midwest Region | Project/Site: Diehl Rd and N Mill Street | City/County: Naperville/ DuPage Sampling Date: May 24, 2022 |
---|--| | Applicant/Owner: Vrutthi LLC | State: IL Sampling Point: A | | Investigator(s) S. DeDina, R. Van Herik | Section, Township, Range: S1 T38N R9E | | Landform (hillslope, terrace, etc.): Woodland opening | Local Relief (concave, convex, none): none | | Slope (%): 0% *Lat: 41.799185 | *Long: -88.156088 Datum: Investigated Area 1 | | | | | | NWI classification: none | | Are climatic / hydrologic conditions on the site typical for this tim | | | Are vegetation Soil Hydrology | significantly disturbed? Are normal circumstances present? Yes ⊠ No □ | | Are vegetation Soil Hydrology | naturally problematic? (If needed, explain any answers in Remarks.) | | SUMMARY OF FINDINGS – Attach site map show | ng sampling point locations, transects, important features, etc. | | Hydrophytic Vegetation Present? Yes ⊠ No □ | | | Hydric Soils Present? Yes ☐ No ☒
Wetland Hydrology Present? Yes ☐ No ☒ | Is the Sampled Area Within a Wetland? Yes ☐ No ☒ | | | cates the climatic/hydrologic conditions have been wetter than normal. | | *Coordinates obtained from Google Earth. | | | VEGETATION – Use scientific names of plants. | | | <u>'</u> | olute Dominant Indicator | | <u>Tree Stratum</u> (Plot size: <u>30'</u>) <u>% (</u> | <u>sover</u> <u>Species?</u> <u>Status</u> Dominance Test worksheet: | | | 7 FACU Number of Dominant Species That are OBL, FACW, or FAC: 5 (A) | | | 5 V FAC Total Number of Dominant Species | | 4. | Across All Strata: 8 (B) | | 5. | Percent of Dominant Species That are ORL FACW or FAC | | Sapling/Shrub Stratum (Plot size: 15') | = Total Cover That are OBL, FACW, or FAC | | | 25 Y FACU | | | 0 Y FAC Prevalence Index worksheet: | | 3. Rhamnus cathartica | 5 N FAC <u>Total % Cover of:</u> <u>Multiply by:</u> | | 4 | OBL species x 1 | | 5. | FACW species x 2 | | 6 | FAC species x 3 FACU species x 4 | | Herb Stratum (Plot size: <u>5'</u>) | FACU species | | | 0 Y FACU TOTALS (A) (B) | | Calystegia sepium | 3 Y FAC Prevalence Index (B/A) = | | 3. 4. | Hydrophytic Vogetation Indicators: | | 5. | | | 6. | ☐ Rapid Test for Hydrophytic Vegetation | | 7. | ☐ ☑ Dominance Test is >50% | | 8. | ☐ Prevalence Index is ≤ 3.0¹ | | 9. | ☐ Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) | | 10. | 3 =Total Cover Problematic Hydrophytic Vegetation¹ (Explain) | | Woody Vine Stratum (Plot size: 30') | ¹ Indicators of hydric soil and wetland hydrology | | 1. Vitis riparia | must be present, unless disturbed or problematic | | 2 | Hydrophytic Vegetation Present? Yes No 🗆 | | Remarks: (Include photo numbers here or on a separate sheet) Photograph 1 | | | IL ofile Description: (Describe the | | | tor or confi | irm the abse | nce of indicators | | |--|---|---|--|---------------------|---|--| | Depth <u>Matrix</u>
nches) <u>Color (Moist)</u> <u>%</u> | Color (Moist) | eatures
<u>%</u> | _Type ¹ _ | _Loc ² _ | Texture | Remarks | | 0-24 10YR 3/1 100 | | _ | _ | | SiL_ | | | 24-30 10YR 4/2 85 | 10YR 5/3
10YR 3/1 | <u>5</u> | C | <u>M</u> | SiCL | | | | 101K 3/1 | <u>10</u> | N/A | <u>M</u> | - | | | | | | | | - | | | | - | <u> </u> | _ | | | | | vno: C - Concentration D- Donlot | ion PM - Roduced Matri | v CS – Covere | nd or Coato | d Sand Crain | a ² l agatan: Dl | -Doro Lining M - Motrix | | <pre>rpe: C = Concentration, D= Deplet dric Soil Indicators</pre> | ion, Rivi – Reduced Math | x, C3 – Covere | ed of Coaled | a Sand Grain | | . =Pore Lining, M = Matrix
roblematic Hydric Soils ³ | | Histosol (A1) | | eyed Matrix (S4 | 4) | | ☐ Coast Prairie | Redox (A16) | | Histic Epipedon (A2) | ☐ Sandy Re | | | | Dark Surface | | | Black Histic (A3)
Hydrogen Sulfide (A4) | ☐ Stripped N | Matrix (S6)
ucky Mineral (F | :1\ | | | ese Masses (F12) | | Stratified Layers (A5) | | eyed Matrix (F2 | | | Other (Explain | Dark Surface (TF12) | | 2 cm Muck (A10) | ☐ Depleted | | -) | | ☐ Other (Explain | iii ii remana) | | Depleted below Dark Surface (A1 | 1) Redox Da | ark Surfacé (F6 | | | | | | Thick Dark Surface (A12) | | Dark Surface (l | | | | drophytic vegetation and wetlan | | Sandy Mucky Mineral (S1) | ☐ Redox De | pressions (F8) | | | | be present unless disturbed or | | 5 cm Mucky Peat or Peat (S3) | | | | | problematic. | | | ETRICTIVA I AVAR LIT ANSARVAAL | | | | | | | | | | | | | | | | Type: | | | | | Hydric Soil Pres | sent? Yes □ No ⊠ | | estrictive Layer (if observed) Type: Depth: emarks: | | | | | Hydric Soil Pres | sent? Yes □ No ⊠ | | Type: Depth: marks: | | | | | Hydric Soil Pres | sent? Yes □ No ⊠ | | Type: Depth: marks: DROLOGY etland Hydrology Indicators: | | angle) | | | , | | | Type: Depth: marks: DROLOGY etland Hydrology Indicators: mary Indicators (Minimum of one i | | | | | Secondary I | ndicators (minimum of two requi | | Type: Depth: DROLOGY Stland Hydrology Indicators: mary Indicators (Minimum of one i | ☐ Water | r Stained Leave | | | Secondary I
☐ Surface S | ndicators (minimum of two requi | | Type: Depth: marks: DROLOGY etland Hydrology Indicators: mary Indicators (Minimum of one i Surface Water (A1) High Water Table (A2) | ☐ Water | r Stained Leave
tic Fauna (B 3) | ` , | | Secondary I | ndicators (minimum of two requi
Soil Cracks (B6)
Patterns (B10) | | Type: Depth: marks: DROLOGY etland Hydrology Indicators: mary Indicators (Minimum of one i Surface Water (A1) High Water Table (A2) Saturation (A3) | ☐ Watel
☐ Aquat
☐ True <i>i</i> | r Stained Leave
tic Fauna (B 3)
Aquatic Plants | (B14) | | Secondary I | ndicators (minimum of two requi
Soil Cracks (B6)
Patterns (B10)
Son Water Table (C2) | | Type: Depth: marks: DROLOGY etland Hydrology Indicators: mary Indicators (Minimum of one i Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) | ☐ Watei
☐ Aquat
☐ True /
☐ Hydro
☐ Oxidiz | r Stained Leave
tic Fauna (B 3)
Aquatic Plants
ogen Sulfide Oo
zed Rhizosphel | (B14)
dor (C1)
res on Livin | g Roots (C3) | Secondary I | ndicators (minimum of two requi
Soil Cracks (B6)
Patterns (B10)
son Water Table (C2)
Burrows (C8)
In Visible on Aerial Imagery (C9) | | Type: Depth: DROLOGY Stland Hydrology Indicators: mary Indicators (Minimum of one in the content of conte | ☐ Watel ☐ Aquat
☐ Aquat
☐ True /
☐ Hydro
☐ Oxidiz
☐ Prese | r Stained Leave
tic Fauna (B 3)
Aquatic Plants
ogen Sulfide Oc
zed Rhizospher
ence of Reduce | (B14)
dor (C1)
res on Living
d Iron (C4) | , | Secondary I | ndicators (minimum of two requisions) Patterns (B10) Son Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (C9) Or Stressed Plants (D1) | | Type: Depth: DROLOGY Interest and Hydrology Indicators: Mary Indicators (Minimum of one i Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) | ☐ Watel
☐ Aquat
☐ True /
☐ Oxidi
☐ Prese
☐ Recel | r Stained Leave
tic Fauna (B 3)
Aquatic
Plants
ogen Sulfide Oc
zed Rhizosphei
ence of Reduce
nt Iron Reductio | (B14)
dor (C1)
res on Living
d Iron (C4)
on in Tilled S | , | Secondary I Surface S Drainage Dry-Seas Crayfish Saturatio Stunted o | ndicators (minimum of two requisions) Soil Cracks (B6) Patterns (B10) Son Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (C9) Or Stressed Plants (D1) Shic Position (D2) | | Type: Depth: Depth: marks: DROLOGY Internal Hydrology Indicators: Mary Indicators (Minimum of one i Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) | ☐ Watel
☐ Aquat
☐ True /
☐ Oxidi:
☐ Prese
☐ Recel
☐ Thin N | r Stained Leave
tic Fauna (B 3)
Aquatic Plants
ogen Sulfide Oc
zed Rhizosphei
ence of Reduce
nt Iron Reductio
Muck Surface (| (B14) dor (C1) res on Living d Iron (C4) on in Tilled 5 C7) | , | Secondary I Surface S Drainage Dry-Seas Crayfish Saturatio Stunted o | ndicators (minimum of two requisions) Patterns (B10) Son Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (C9) Or Stressed Plants (D1) | | Type: Depth: DROLOGY Interest and Hydrology Indicators: Mary Indicators (Minimum of one i Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Image | Watel
 Aquat
 True /
 Oxidi:
 Prese
 Recel
 Thin Nery (B7) Gaug | r Stained Leave
tic Fauna (B 3)
Aquatic Plants
ogen Sulfide Oc
zed Rhizosphei
ence of Reduce
nt Iron Reduction
Muck Surface (e | (B14) dor (C1) res on Living d Iron (C4) on in Tilled 5 C7) (D9) | , | Secondary I Surface S Drainage Dry-Seas Crayfish Saturatio Stunted o | ndicators (minimum of two requisions) Soil Cracks (B6) Patterns (B10) Son Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (C9) Or Stressed Plants (D1) Shic Position (D2) | | Type: Depth: DROLOGY Indicators: DROLOGY Indicators: DROLOGY Indicators: Indi | Watel
 Aquat
 True /
 Oxidi:
 Prese
 Recel
 Thin Nery (B7) Gaug | r Stained Leave
tic Fauna (B 3)
Aquatic Plants
ogen Sulfide Oc
zed Rhizosphei
ence of Reduce
nt Iron Reductio
Muck Surface (| (B14) dor (C1) res on Living d Iron (C4) on in Tilled 5 C7) (D9) | , | Secondary I Surface S Drainage Dry-Seas Crayfish Saturatio Stunted o | ndicators (minimum of two requisions) Soil Cracks (B6) Patterns (B10) Son Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (C9) Or Stressed Plants (D1) Shic Position (D2) | | Type: Depth: DROLOGY Etland Hydrology Indicators: mary Indicators (Minimum of one i Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surelid Observations: | Watel Aquat Aquat True / True / True / Oxidiz Presse Recel Thin Nerry (B7) Gaug face (B8) Other | r Stained Leave
tic Fauna (B 3)
Aquatic Plants
ogen Sulfide Oc
zed Rhizospher
ence of Reduce
nt Iron Reductic
Muck Surface (
e or Well Data
(Explain in Re | (B14) dor (C1) res on Living d Iron (C4) on in Tilled 5 C7) (D9) | , | Secondary I Surface S Drainage Dry-Seas Crayfish Saturatio Stunted o | ndicators (minimum of two requisions) Soil Cracks (B6) Patterns (B10) Son Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (C9) Or Stressed Plants (D1) Shic Position (D2) | | Type: Depth: DROLOGY Etland Hydrology Indicators: Imary Indicators (Minimum of one i Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Image Sparsely Vegetated Concave Sureld Observations: Inface Water Present? Yes | Watel
 Aquat
 True /
 Oxidi:
 Prese
 Recel
 Thin Nery (B7) Gaug | r Stained Leave
tic Fauna (B 3)
Aquatic Plants
ogen Sulfide Oc
zed Rhizospher
ence of Reducte
nt Iron Reduction
Muck Surface (
e or Well Data
(Explain in Re | (B14) dor (C1) res on Living d Iron (C4) on in Tilled 5 C7) (D9) | , | Secondary I Surface S Drainage Dry-Seas Crayfish Saturatio Stunted o | ndicators (minimum of two requisions) Soil Cracks (B6) Patterns (B10) Son Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (C9) Or Stressed Plants (D1) Shic Position (D2) | | Type: Depth: DROLOGY Stland Hydrology Indicators: mary Indicators (Minimum of one i Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Image Sparsely Vegetated Concave Sureld Observations: rface Water Present? Yes ster Table Present? Yes turation Present? Yes | Watel Aquat Aquat True / True / True / Oxidiz Presse Recei Thin Nerry (B7) Gaug face (B8) Other | r Stained Leave
tic Fauna (B 3)
Aquatic Plants
ogen Sulfide Oc
zed Rhizospher
ence of Reduce
nt Iron Reduction
Muck Surface (i
e or Well Data
(Explain in Re | (B14) dor (C1) res on Living d Iron (C4) on in Tilled 5 C7) (D9) | Soils (C6) | Secondary II Surface S Drainage Dry-Seas Crayfish Saturatio Stunted of Geomorp FAC-Neu | ndicators (minimum of two requisions) Soil Cracks (B6) Patterns (B10) Son Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (C9) Or Stressed Plants (D1) Shic Position (D2) | | Type: Depth: DROLOGY Stland Hydrology Indicators: mary Indicators (Minimum of one i Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Image Sparsely Vegetated Concave Sur old Observations: Ifface Water Present? Yes Ster Table Present? Yes Sturation Present? Yes Sturation Present? Yes Scludes capillary fringe) | □ Watel □ Aquat □ True □ Hydro □ Oxidiz □ Prese □ Recel □ Thin N ery (B7) □ Gaug face (B8) □ Other □ No⊠ Depth (inches □ No⊠ Depth (inches | r Stained Leave tic Fauna (B 3) Aquatic Plants ogen Sulfide Oc zed Rhizospher ence of Reduce nt Iron Reduction Muck Surface (i e or Well Data (Explain in Re | (B14) dor (C1) res on Living d Iron (C4) on in Tilled \$ C7) (D9) marks) | Soils (C6) | Secondary I Surface S Drainage Dry-Seas Crayfish Saturatio Stunted o Geomorp FAC-Neu | ndicators (minimum of two requi
Soil Cracks (B6)
Patterns (B10)
son Water Table (C2)
Burrows (C8)
In Visible on Aerial Imagery (C9)
or Stressed Plants (D1)
or hic Position (D2)
utral Test (D5) | | Type: Depth: Depth: Taland Hydrology Indicators: Mary Indicators (Minimum of one in Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surial Observations: Iface Water Present? Yes ter Table Present? Yes ter Table Present? Yes ter Table Present? | □ Watel □ Aquat □ True □ Hydro □ Oxidiz □ Prese □ Recel □ Thin N ery (B7) □ Gaug face (B8) □ Other □ No⊠ Depth (inches □ No⊠ Depth (inches | r Stained Leave tic Fauna (B 3) Aquatic Plants ogen Sulfide Oc zed Rhizospher ence of Reduce nt Iron Reduction Muck Surface (i e or Well Data (Explain in Re | (B14) dor (C1) res on Living d Iron (C4) on in Tilled \$ C7) (D9) marks) | Soils (C6) | Secondary I Surface S Drainage Dry-Seas Crayfish Saturatio Stunted o Geomorp FAC-Neu | ndicators (minimum of two requi
Soil Cracks (B6)
Patterns (B10)
son Water Table (C2)
Burrows (C8)
In Visible on Aerial Imagery (C9)
or Stressed Plants (D1)
or hic Position (D2)
utral Test (D5) | #### WETLAND DETERMINATION DATA FORM - Midwest Region | Project/Site: Diehl Rd and N Mill Street City/County: | Naperville/ DuPage Sampling Date: May 24, 2022 | |---|--| | Applicant/Owner: Vrutthi LLC | State: IL Sampling Point: B | | Investigator(s) S. DeDina, R. Van Herik Section, Town | nship, Range: S1 T38N R9E | | Landform (hillslope, terrace, etc.): Woodland | Local Relief (concave, convex, none): none | | Slope (%): <u>0%</u> *Lat: <u>41.799670</u> *Long: | -88.156664 Datum: Investigated Area 2 | | Soil Map Unit Name: Chenoa silty clay loam, 0 to 2 percent slopes (614A | NWI classification: none | | Are climatic / hydrologic conditions on the site typical for this time of year? You | es ☐ No ☑ (If no explain in remarks) | | Are vegetation ☐ Soil ☐ Hydrology ☐ significantly dis | sturbed? Are normal circumstances present? Yes ⊠ No □ | | Are vegetation ☐ Soil ☐ Hydrology ☐ naturally proble | ematic? (If needed, explain any answers in Remarks.) | | UMMARY OF FINDINGS – Attach site map showing samplin | g point locations, transects, important features, etc. | | Wetland Hydrology Present? Yes ☐ No 🗵 | ls the Sampled Area Within a Wetland? Yes ☐ No ⊠ | | Remarks: Precipitation data from the previous 3 months indicates the clim | natic/hydrologic conditions have been wetter than normal. | | *Coordinates obtained from Google Earth. | | | EGETATION – Use scientific names of plants. | | | Absolute Domi | Cies? Status // FACU // FACU // FAC // Total Number of Dominant Species Across All Strata: 5 Bercent of Dominant Species | | Sapling/Shrub_Stratum (Plot size: 15') = Tot | That are OBL, FACW, or FAC 40% (A/B) | | 1. Rhamnus cathartica 60 Y 2. Lonicera tatarica 20 Y 3. 4. 5. | | | <u>Herb Stratum</u> (Plot size: <u>5'</u>) 1. 2. | FACU species | | 3.
4. | Hydrophytic Vegetation Indicators: | | 5. | ☐ Dominance
Test is >50% ☐ Prevalence Index is < 3.01 | | 2. | al Cover Hydrophytic Vegetation Present? Yes□ No ⊠ | | Remarks: (Include photo numbers here or on a separate sheet) Photograph 2 | | | 0011 | | | | | | | _ | | | |------------------------|---|--------------|-----------------------|-------------------------------|----------------------|---------------------------|---------------------------------|--|--| | Sampling Point B | | | | | | | | | | | | | - | th needed to docu | | licator or confi | rm the abse | ence of indicators | S | | | Depth (Inches) | Matrix
Color (Moist) | % | | Features | Tuno1 | 1.002 | Toyturo | Demorks | | | (Inches)
0-14 | 10YR 3/1 | 100 | Color (Moist) | <u>%_</u> | _Type ¹ _ | _Loc ² _ | <u>Texture</u>
SiL | Remarks Remarks | | | 14-18 | 10YR 4/3 | 80 | 10YR 3/1 | 15 | N/A | M | SiCL | | | | | | | 10YR 5/6 | <u>15</u>
<u>5</u> | | <u></u> | | | | | 18-24 | 10YR 4/4 | 85 | 10YR 5/6 | <u>10</u> | <u>c</u>
<u>c</u> | M | SiCL | | | | | | | 10YR 3/1 | <u>5</u> | N/A | M | | | | | | | | | _ | | | | | | | | | | | | | | - | | | | ¹ Type: C = | Concentration, D= | = Depletion, | RM = Reduced Ma | trix, CS = Co | vered or Coated | d Sand Grain | ns ² Locaton: P | L =Pore Lining, M = Matrix | | | | il Indicators | | _ | | | | | Problematic Hydric Soils ³ | | | Histoso | | | | Sleyed Matrix | : (S4) | | Coast Prairie | | | | ☐ HISTIC E | pipedon (A2) | | ☐ Sandy F | Redox (S5)
I Matrix (S6) | | | ☐ Dark Surface | e (57)
nese Masses (F12) | | | | en Sulfide (A4) | | | Mucky Minera | al (F1) | | | v Dark Surface (TF12) | | | ☐ Stratifie | d Layers (À5) | | | Gleyed Matrix | | | ☐ Other (Expla | | | | ☐ 2 cm M | | | | d Matrix (F3) | | | | , | | | | ed below Dark Surf | | | Dark Surface | | | 31 " (61 | | | | _ | ark Surface (A12)
Mucky Mineral (S1 | | | d Dark Surfa
Depressions (| | | | ydrophytic vegetation and wetland
it be present unless disturbed or | | | | ucky Peat or Peat | | ☐ Kedox I | Depressions (| (ГО) | | problematic. | t be present unless disturbed of | | | | e Layer (if observ | | | | | | | | | | Type: | • | , | | | | | | | | | Depth: | | | • | | | | Hydric Soil Present? Yes ☐ No ☒ | | | | Remarks: | HYDROL | OGY | | | | | | | | | | Wetland H | lydrology Indicate | ors: | | | | | | | | | Primary Inc | dicators (Minimum | of one is re | quired: check all tha | at apply) | | | Secondary | Indicators (minimum of two required) | | | ☐ Surface | Water (A1) | | □ Wat | er Stained Le | eaves (BQ) | | ☐ Surface | Soil Cracks (B6) | | | | ater Table (A2) | | | atic Fauna (E | | | | e Patterns (B10) | | | ☐ Saturati | ` ' | | | ☐ True Aquatic Plants (B14) | | | | ason Water Table (C2) | | | ☐ Water N | Лark̀s (В́1) | | ☐ Hyd | rogen Sulfide | e Odor (Ć1) | | ☐ Crayfish | Burrows (C8) | | | | ent Deposits (B2) | | | | pheres on Livin | g Roots (C3) | | on Visible on Aerial Imagery (C9) | | | | posits (B3) | | | | uced Iron (C4) | (0.0) | | or Stressed Plants (D1) | | | Algal M | at or Crust (B4) | | | | uction in Tilled | Soils (C6) | ☐ Geomoi | rphic Position (D2) | | | ☐ Iron De | posits (B5) `´
ion Visible on Aeri | al Imagan, | | n Muck Surfa
ige or Well D | | | ☐ FAC-Ne | eutral Test (D5) | | | | ly Vegetated Conc | | | er (Explain in | | | | | | | Field Obse | | ave Guriace | (00) | ci (Explain iii | rtemantsj | | | | | | | | | | | | | | | | | | ater Present? | Yes 🔲 | | | | | | | | | | le Present? | Yes 🗌 | | | | | lamal I badaa I a a | Dracent2 Vee No No No | | | Saturation | | Yes 🗌 | No⊠ Depth (inche | es) <u>N/A</u> | | wet | iana Hydrology F | Present? Yes⊟ No ⊠ | | | ` | (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: | | | | | | | | | | Describe R | Recorded Data (Str | cam yauge, | monitoring well, ae | παι μποιοδ, β | revious irispect | iorio <i>j</i> , ii avali | avic. | | | Remarks: #### WETLAND DETERMINATION DATA FORM - Midwest Region | Project/Site: Diehl Rd a | ind N Mill Street | | City/County: | Naperville/ DuPa | ge Samp | oling Date: <u>May 24, 2022</u> | |---|--------------------------|-----------------------|--|------------------------|---|---| | Applicant/Owner: Vrutth | ni LLC | | | S | tate: <u>IL</u> Samp | ling Point: C | | Investigator(s) S. De | eDina, R. Van Herik | | Section, Towns | ship, Range: <u>S1</u> | T38N R9E | | | Landform (hillslope, terrac | ce, etc.): Wood | and | | Local Relief (co | ncave, convex, none): nor | ne | | Slope (%): 0% | *Lat: | | *Long: _ | | Datum: Investig | ated Area 3 | | Soil Map Unit Name: | Varna silt loam, 2 t | o 4 percent slopes | s (223B) | | NWI class | sification: none | | Are climatic / hydrologic c | onditions on the site | typical for this time | e of year? Yes | s □ No 図(If no e | explain in remarks) | | | Are vegetation | Soil Hyd | rology \square | significantly dist | urbed? Are nor | mal circumstances present? | Yes ⊠ No □ | | Are vegetation | Soil Hyd | rology \square | naturally probler | matic? (If need | ed, explain any answers in F | Remarks.) | | SUMMARY OF FINDI | NGS – Attach si | te map show | ing sampling | point locatio | ns, transects, importa | ant features, etc. | | Hydrophytic Vegetation P
Hydric Soils Present?
Wetland Hydrology Prese | Yes ☐ 1
nt? Yes ☐ 1 | No ⊠
No ⊠ | | · | a Within a Wetland? | Yes □ No ⊠ | | Remarks: Precipitation | data from the previo | ous 3 months ind | icates the clima | tic/hydrologic co | nditions have been wetter | than normal. | | *Coordinates obtained fro | m Google Earth. | | | | | | | /EGETATION - Use | scientific names | of plants. | | | | | | Populus deltoides Prunus serotina Betula papyrifera | size: <u>30'</u>) | <u>% (</u> | olute Domin
Cover Specie
40 Y
20 Y | | Dominance Test work Number of Dominant S That are OBL, FACW, Total Number of Domir Across All Strata: Percent of Dominant S | Species 3 (A) or FAC: anant Species 5 (B) | | Sapling/Shrub Stratum | (Plot size: <u>15'</u>) | | 70 = Tota | l Cover | That are OBL, FACW, | | | 4. | a | | | | Prevalence Index wol Total % Cover of: OBL species FACW species FAC species | rksheet: Multiply by: x 1 x 2 x 3 | | Herb Stratum (Plot size 1. Rhamnus cathartic 2. Prunus serotina | / | | 5 Y
5 Y | Cover FAC FACU | FACU species UPL species | x 4 x 5 (B) | | 3. | | | <u> 5 </u> | FACU | Prevalence Index (B/A) | | | 5. 6. 7. 8. 9. 10. Woody Vine Stratum (| Plot size: <u>30'</u>) | | 10 =Total | Cover | data in Remarks ☐ Problematic Hydrop ¹Indicators of hydric so | rophytic Vegetation
>50% | | ^ | | | | | Hydrophytic Vegetati | on Present? Yes⊠ No □ | | Remarks: (Include photo | numbers here or on | a separate sheet) | | | | | | Photograph 3 | | | | | | | | SOIL | | | | | | | S | ampling Point <u>C</u> | |--------------------------|---|-------------------|------------------|---|----------------------|-------------------|-------------------------------|--| | Profile Desc | ription: (Descri | be the depth ne | eded to docu | ment the ind | icator or confi | irm the a | bsence of indicators | S | | Depth | Matrix | _ | Redox | r Features | | | | | | (Inches) | Color (Moist) | | or (Moist) | <u>%</u> | _Type ¹ _ | _Loc ² | | Remarks | | <u>0-16</u> | 10YR 3/1 | <u>100</u> | | | | | <u>SiL</u> | | | 16-24 | 10YR 3/1 | 95 | 10YR 4/4 | <u>5</u> | С | M | SiL | | | | | | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | <u></u> - | <u> </u> | | <u> </u> | | | | | | | <u></u> - | | | - | | | ¹ Type: C = C | oncentration, D= | Depletion, RM | = Reduced Ma | trix, CS = Cov | ered or Coated | d Sand G | rains ² Locaton: P | L =Pore Lining, M = Matrix | | Hydric Soil | | , | | , - | - | | | Problematic Hydric Soils ³ | | ☐ Histosol (| | | ☐ Sandy 0 | Sleyed Matrix | (S4) | | ☐ Coast Prairie | | | ☐ Histic Epi | | | | Redox (S5) | | | ☐ Dark Surface | | | ☐ Black His | | | | d Matrix (S6) | | | | nese Masses (F12) | | | Sulfide (A4) | | ∐ Loamy I | Mucky Minera | il (F1) | | | v Dark Surface (TF12) | | Stratified | | | | Gleyed Matrix | (F2) | | ☐ Other (Expla | in in Remarks) | | 2 cm Mud | ะห (A10)
below Dark Surf | iooo (Λ11) | | d Matrix (F3)
Dark Surface (| (E6) | | | | | | k Surface (A12) | ace (ATT) | | d Dark Surface | | | 3 Indicators of h | ydrophytic vegetation and wetland | | | ucky Mineral (S1 |) | | Depressions (| | | | t be present unless disturbed or | | | ky Peat or Peat | | | soprocoiono (| . 0) | | problematic. | . 50 p. 505 a555 a.5.a. 50 a. | | | Layer (if observ | | | | | | | | | Type: | , | , | | | | | | | | Depth: | | | | | | | Hydric Soil Pre | esent? Yes □ No ⊠ | | Remarks: | | - | | | | | | | | HYDROLO | GY | | | | | | | | | • | drology Indicate | | | | | | | | | Primary India | cators (Minimum | of one is require | d: check all tha | at apply) | | | <u>Secondary</u> | Indicators (minimum of two required) | | ☐ Surface V | Vater (A1) | | ☐ Wat | ter Stained Le | eaves (B9) | | ☐ Surface | Soil Cracks (B6) | | | er Table (A2) | | | iatic Fauna (B | | | | e Patterns (BÌ10) | | ☐ Saturation | | | | e Aquatic Plar | | | | son Water Table (C2) | | ☐ Water Ma | | |
 Irogen Sulfide | | | | Burrows (C8) | | | Deposits (B2) | | | | heres on Living | g Roots (| | on Visible on Aerial Imagery (C9) | | ☐ Drift Dep | | | | | uced Iron (C4) | Caila (CC) | | or Stressed Plants (D1) | | ☐ Iron Depo | or Crust (B4) | | | ent Iron Redt
1 Muck Surfac | uction in Tilled (| Solis (Co | | phic Position (D2)
eutral Test (D5) | | | ก Visible on Aeri | al Imagery (B7) | | ige or Well Da | ` ' | | ☐ FAC-Ne | edital Test (D3) | | | Vegetated Conc | | | er (Explain in | | | | | | Field Obser | | (20) | | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , | | | | | | | | | | | | | | | Surface Wat | er Present? | Yes □ No⊠ | | | | | | | | Water Table | | Yes ☐ No⊠ | | es) <u>N/A</u> | | | | | | Saturation P | | Yes ☐ No⊠ | Depth (inch | es) <u>N/A</u> | | V | Vetland Hydrology F | Present? Yes⊟ No ⊠ | | (includes cap | | | | | | | | | | Describe Re | corded Data (str | eam gauge, mon | itoring well, ae | rial photos, pr | revious inspect | ions), if a | vailable: | Remarks: | | | | | | | | | DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Investigated Area 1 Sample Point A **Facing West** DATE PHOTO TAKEN: May 24, 2022 #### **PHOTOGRAPH 2** #### DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Investigated Area 2 Sample Point B **Facing West** DATE PHOTO TAKEN: DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Investigated Area 3 Sample Point C **Facing West** DATE PHOTO TAKEN: May 24, 2022 #### **PHOTOGRAPH 4** DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Site Boundary Overview Facing West DATE PHOTO TAKEN: DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Site Overview **Facing West** DATE PHOTO TAKEN: May 24, 2022 #### **PHOTOGRAPH 6** DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Site Overview Facing East DATE PHOTO TAKEN: DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Site Overview **Facing West** DATE PHOTO TAKEN: May 24, 2022 #### **PHOTOGRAPH 8** DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Site Overview **Facing Southwest** DATE PHOTO TAKEN: DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Site Overview Facing North DATE PHOTO TAKEN: May 24, 2022 #### **PHOTOGRAPH 10** **DESCRIPTION:** Diehl Road & N. Mill Street / Vrutthi LLC Site Overview Facing North DATE PHOTO TAKEN: DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Site Overview **Facing Southeast** DATE PHOTO TAKEN: May 24, 2022 #### PHOTOGRAPH 12 **DESCRIPTION:** Diehl Road & N. Mill Street / Vrutthi LLC Site Overview Facing North DATE PHOTO TAKEN: DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Fire Hydrant Facing South DATE PHOTO TAKEN: May 24, 2022 #### PHOTOGRAPH 14 DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Site Overview Facing West DATE PHOTO TAKEN: DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Site Boundary Overview **Facing West** DATE PHOTO TAKEN: May 24, 2022 #### **PHOTOGRAPH 16** **DESCRIPTION:** Diehl Road & N. Mill Street / Vrutthi LLC Site Boundary Overview Facing South DATE PHOTO TAKEN: DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Site Overview Facing North DATE PHOTO TAKEN: May 24, 2022 #### **PHOTOGRAPH 18** **DESCRIPTION:** Diehl Road & N. Mill Street / Vrutthi LLC Site Overview Facing South DATE PHOTO TAKEN: DESCRIPTION: Diehl Road & N. Mill Street / Vrutthi LLC Culvert Pipe **Facing Southwest** DATE PHOTO TAKEN: May 24, 2022 #### **PHOTOGRAPH 20** **DESCRIPTION:** Diehl Road & N. Mill Street / Vrutthi LLC Site Overview **Facing Northeast** DATE PHOTO TAKEN: ## Antecedent Precipitation vs Normal Range based on NOAA's Daily Global Historical Climatology Network | Coordinates | 41.799844, -88.156023 | |----------------------------------|-----------------------| | Observation Date | 2022-05-24 | | Elevation (ft) | 731.97 | | Drought Index (PDSI) | Incipient wetness | | WebWIMP H ₂ O Balance | Wet Season | | 30 Days Ending | 30 th %ile (in) | 70 th %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product | |----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-------------------------| | 2022-05-24 | 3.143307 | 5.708268 | 4.240158 | Normal | 2 | 3 | 6 | | 2022-04-24 | 2.440551 | 4.437008 | 4.700788 | Wet | 3 | 2 | 6 | | 2022-03-25 | 1.576378 | 2.487795 | 2.767717 | Wet | 3 | 1 | 3 | | Result | | | | | | | Wetter than Normal - 15 | | Weather Station Name | Coordinates | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days (Normal) | Days (Antecedent) | |----------------------|-------------------|----------------|---------------|-------------|------------|---------------|-------------------| | AURORA | 41.7803, -88.3092 | 660.105 | 8.006 | 71.865 | 4.178 | 11292 | 88 | | NAPERVILLE 1.1 NW | 41.7729, -88.1713 | 691.929 | 2.021 | 40.041 | 0.99 | 6 | 0 | | NAPERVILLE 0.5 NW | 41.7685, -88.1603 | 675.853 | 2.177 | 56.117 | 1.102 | 1 | 2 | | NAPERVILLE 1.9 ENE | 41.7682, -88.1174 | 748.032 | 2.956 | 16.062 | 1.378 | 2 | 0 | | WHEATON 3 SE | 41.8128, -88.0728 | 680.118 | 4.379 | 51.852 | 2.198 | 52 | 0 | #### **LEGEND:** Project Area #### **Location Map** Source: U.S. Geological Survey Section 1 T38N R9E Latitude: 41.799906 Longitude: -88.155993 #### SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** SCALE: 1"= 2000' Exhibit A ### **National Wetlands Inventory** Source: U.S. Fish & Wildlife Service . . 0 100 200 SCALE: 1"=200' 400 NORTH SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** Exhibit B # DuPage County Wetland Inventory Source: DuPage County Stormwater Management #### SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** SCALE: 1"=200' Exhibit C ### Soil Map Source: U.S. Department of Agriculture Natural Resources Conservation Service Web Soil Survey 3.1 #### SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** 0 100 200 40 SCALE: 1"=200' NORTH Exhibit D Source: U.S. Geological Survey Naperville Quadrangle #### **SWC Diehl Rd & N Mill St** Project Number: 22-0511A **Vrutthi LLC** Exhibit E ### Flood Insurance Rate Map Source: Federal Emergency Management Agency (FEMA) Panel Number: 17043C0142J Effective Date: August 1, 2019 #### **SWC Diehl Rd & N Mill St** Project Number: 22-0511A **Vrutthi LLC** SCALE: 1"=200' Exhibit F Vrutthi LLC Exhibit G #### **LEGEND:** #### Project Area - Fart of a NR Historic District - Determined eligible for the NR - Fart of a NR Historic District Contributing - Entered in the NR - Undetermined - Char Historic Architectural Resources Geographic Information System Source: Illinois State Historic Preservation Office 24 0 200 400 SCALE: 1"=400' 800 SWC Diehl Rd & N Mill St Project Number: 22-0511A Vrutthi LLC Exhibit H #### **LEGEND:** Project Area A-C WL Delineation Field Work Completed 05.24.2022 ### **Aerial Photograph** Map data: ©2020Google Image Date: 2018 #### SWC Diehl Rd & N Mill St Project Number: 22-0511A **Vrutthi LLC** Exhibit I